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AOAC INTERNATIONAL 
Presidential Task Force on  

Best Practices for Microbiological Methodology 
US FDA Contract #223-01-2464, Modification #12 

Task Force Report 
 
 
I. Background 
 
During the past several years, issues have been raised about the limitations of the current 
AOAC guidelines for validation of microbiological methods.  These issues have included 
the high rate of apparent false negative results when unpaired samples are used, the lack 
of a definitive acceptable range for “fractional positive” results for qualitative studies and 
the lack of appropriateness of the guidelines to bacterial toxins.  A statistical task force 
was formed in 2003 to try to address the statistical issues, especially in the case of 
unpaired samples, and propose solutions.  A set of recommendations was drafted, but as 
yet the recommendations have not been adopted by the Official Methods Board of 
AOAC.  This task force did not address all the issues and concerns previously raised 
relative to validation of microbiological methods, but focused on the issues of importance 
to the US FDA as outlined in the objectives of the contract. 
 
Modification #12 of USFDA Contract #223-01-2464 arose from discussions of the 
limitations of the current AOAC microbiology guidelines and a proposal to re-evaluate 
the AOAC guidelines was created.  Modification #12 of the contract is focused on 
developing recommendations on the best practices for validation of microbiological 
methods by an international team of experts.  The goal of the group was to consider the 
technical and statistical aspects of the current AOAC guidelines and ISO 16140 and to 
recommend new approaches where needed, without regard to harmonization, consensus 
within AOAC INTERNATIONAL or consensus among international validating 
organizations. 
 
To lead the project, AOAC appointed Russ Flowers to Chair the Presidential Task Force 
on Best Practices for Microbiological Methods (BPMM, hereafter referred to as Task 
Force).  A task force structure quickly took shape, comprising a Steering Committee (SC) 
of key individuals with varying expertise and four Working Groups – Detection Limits 
(DLWG), Matrix Extension (MEWG), Sampling (SAWG), and Statistics (STWG).  The 
working groups were chaired by Steering Committee members and populated by 
international experts in that topic area.  Great effort was expended to identify technical 
experts from government, industry, reference laboratories, and academia with varied 
backgrounds in food safety, quality assurance, clinical diagnostics, veterinary diagnostics 
and engineering.  Not surprisingly, some of these experts also serve on committees for 
other standards organizations, such as ISO (International Standards Organization), ASTM 
(American Society for Testing and Materials), CLSI (Clinical and Laboratory Standards 
Institute, formerly NCCLS), and CEN, the European Committee for Normalization.  Care 
was taken, however, to select scientists and technical experts, without introducing 
political agendas.   
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It is interesting to note that ISO TC 34 SC 9 is also considering a revision of the ISO 
16140 guidelines and the recommendations from the BPMM task force will provide 
valuable input to that process.  The BPMM project is an important step in the 
international harmonization of microbiological methods. 
 
The objectives contained in Modification 12 of the US FDA contract were assigned to the 
working groups as appropriate, and the task of the working groups was to address the 
objectives by developing recommendations based on sound scientific and statistical 
principles.  The Steering Committee provided guidance to the working groups and served 
as editors for the final reports.  There were some topic areas that overlapped between 
Working Groups and, therefore, for future publication purposes, the ideas and 
recommendations of the task force would be best organized by topic area rather than by 
contract objectives as contained in this report. 
 
This report summarizes the recommendations of the task force and is supported by 
appended working group reports, which provide the details behind the recommendations.  
The goal of the BPMM task force, in the short period of time allotted for the contract, 
was to determine the best practices for validation of microbiological methods and to 
make recommendations for consideration and further research by AOAC and US FDA. 
The Task Force did not attempt to create new microbiology validation guidelines as many 
of the recommendations represent new approaches that must be further evaluated from 
the perspective of practical application.  There is no expectation of adoption of the 
recommendations by AOAC INTERNATIONAL.  After discussing the merits and 
limitations of the BPMM recommendations, it is hoped that additional work will be 
funded to further refine and practically evaluate the recommendations presented herein.  
The Steering Committee recommends first that existing data be used to compare the 
statistical recommendations to current practice, and then laboratory feasibility studies be 
conducted to test proposed study designs and sample preparation techniques.  These 
additional efforts would be expected to lead to development of new detailed guidelines 
for validation of microbiological methods that will be proposed for adoption by AOAC. 
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II. Executive summary  
 
The Presidential Task Force for Best Practices in Microbiological Methods (BPMM) 
makes the following recommendations relative to the objectives of Contract #223-01-
2464, Modification #12.  A more complete explanation and justification for the 
recommendations is given in the appended documents.  A glossary of terms is found in 
Appendix O. 
 
Objective 1: Once a microbiological method has been validated for an array of specific 
foods and specific strains of a microorganism: 

a) To what extent can these results be extrapolated to other foods and other strains? 
b)  Are there abbreviated but scientifically/statistically appropriate 

procedures/protocols by which a validation can be expanded to include additional 
foods and/or strains?   

c) How can methods be applied to specific foods, where no validation has been 
performed? 

 
The BPMM Task Force recommends new food sub-categorization schemes based on 
proximate analysis, level and types of background microflora, presence of inhibitors and 
other characteristics of food matrices that may affect microbial growth, recovery or 
analytical procedures.  Based on the new scheme, varying degrees of verification or 
validation (from no verification or validation to harmonized collaborative validation) 
would be required in order to apply a method to a new food matrix.  The degree of 
validation or verification is dependent on how closely related the new matrix is to 
previously validated matrices and on the current validation status of the method (single 
lab validated, multiple lab validated or harmonized collaboratively validated). 
 
A list of essential reference organisms and toxins was compiled to address the issue of 
variability of strains.  The organisms and toxins represent antigenic and genomic 
variability and are recommended to be used as part of the inclusivity testing as 
appropriate for the method target.  Other food-borne isolates should be added to the 
inclusivity list based on the claimed application of the method. 
 
Objective 2: What are the scientific/statistical bases for developing performance 
standards against which the validation of methods should be based? 
 
The Task Force recommends that performance standards be based on public health 
objectives (PHOs) and/or fitness for purpose criteria.  In general, statistical methods 
should be used to assist in setting realistic performance standards.  These procedures 
should be based on control of error related to a true negative testing positive (Type I) and 
error related to a true positive testing negative (Type II).  Levels of poor performance that 
must be detected (with stated probabilities) should be determined.   Appropriately 
determined sample sizes should be used to meet the stated goals.  This approach would be 
a change from current practices where studies are accepted on the basis of standard 
designs for number of laboratories, materials, and replicates, and standard criteria for 
suitability of the summary statistics. The design specifications and resulting reliability 
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estimates should form the basis of applicability statements for test and measurement 
methods. 
 
Objective 3: What are reasonable performance standards [criteria] when 
microbiological methods are to be validated for use for: 1) Attribute (presence/absence) 
testing (for both 2-class and 3-class sampling plans), 2) Variables (quantitative) testing 
of batches, and 3) Process control testing of processes or cross-batch testing? 
 
Whether the method is to be used for attribute or variables testing, performance standards 
are similar.  Ruggedness tests should be performed on the analytical procedure being 
used.  The validation of a test should include estimates of sensitivity, specificity and 
accuracy.  Reproducibility and repeatability should be determined through a detailed 
collaborative study and ranges of these measures should be published for quality 
assurance purposes.  Results reporting should include a 95 % confidence interval rather 
than a point estimate of the mean.  More detailed and specific recommendations are given 
in Appendix C.   

 
Recommendations relative to Statistical Process Control (SPC) include Shewhart Charts 
of control samples with statistical control limits.  Standard rules for setting control limits 
and evaluating control of these charts with respect to Type I and II errors should be 
followed.  Specification limits should not be part of a SPC system.  Further details of the 
SPC recommendations are described in more detail in Appendix F. 
 
Objective 4: What are the scientific/statistical bases for determining the lower limit of 
detection for microbiological methods?  How is the lower limit of detection validated 
during the validation of a method?  How is the relative performance of a method 
determined as the lower limit of detection is approached and what is the best way of 
characterizing this performance? 
 
The detection limit for qualitative tests is best described as the “LOD50”, or number of 
organisms per gram of sample at which 50% of the tests are positive.  “LOD50” not used 
in the analytical chemistry sense of LOD and LOQ.  It is used in the microbiological 
sense of an endpoint where the methods are able to estimate around the level of a few 
particles (bacterium, virus, or genetic macromolecule) per analytical portion.  This is 
possible because virtually unlimited amplifiability of such particles is possible due to 
their ability to multiply themselves in appropriate conditions.  Fifty percent endpoint 
calculation methods allow for failures to inoculate resulting from imperfect homogeneity 
at low particle numbers per analytical portion.  Such calculations do not assume or 
require paired samples.  LOD50 is determined with a nonparametric (distribution free) 
version of probit analysis, and an experimental study using at least 4 dilutions in which at 
least two of the dilutions have “fractional positives” in order to estimate better the LOD50. 
 Estimates of other percentiles, such as the LOD90 (number of organisms per gram of 
sample where 90% of results are positive) may be possible in the future development of 
this approach.  The LOD50 procedure requires that one dilution level has 0% positive 
results and one dilution level has nearly 100% positive results (allowing for measurement 
error in the test laboratories).  The associated confidence limits refer to the uncertainty of 
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the estimated LOD50. As proposed here, the LOD50 would be calculated for the pool of 
results from a multi-laboratory study with or without removing outlying laboratories. 
However, LOD50 values could be calculated for each participating laboratory for the 
purpose of removing outlying laboratories from a study. 
 
The LOD50 approach assures that the lower limit of detection for a method is described.  
However, the number of organisms/g at the limit of detection must be determined on the 
day of analysis of the test portions.  This can be accomplished by analyzing the seed 
(inoculated or naturally contaminated product diluted into the test samples) on the day of 
analysis, or by employing a reference method, if one exists, with a known limit of 
detection in that matrix.  In a single method validation, where no reference method exists, 
the number of organisms/g at the limit of detection must be measured or calculated from 
measuring the level of organisms in the seed on the day of analysis.  Methods for 
measurement are described.   
 
For quantitative methods, the committee recommends use of the ISO 16140 procedure, 
which presents limits of detection and quantification as functions of the variability of 
blank (or very low) samples.  The committee recognizes, however, that alternative 
procedures exist that should be investigated, such as the ISO 11843 series on capability 
of detection, or the nonparametric analog of that procedure described in the CLSI 
document EP17-A on Limits of Detection and Quantitation.  These procedures recognize 
the importance of Type I and Type II errors, and that variances of signals from truly 
negative and truly positive samples can be different.  There are related strategies for 
designing experiments to use the ISO/CLSI approach.  
 
Objective 5: What are the scientific/statistical bases for developing validation protocols 
that adequately take into account the biological variation that exists within both the 
microorganisms and toxins produced by these microorganisms for which methods are 
developed and the foods which will be analyzed? 
 
See Objective 1 for discussion of biological variation of microorganisms and 
categorization of foods. 
 
Validation of methods for toxins produced by microorganisms present a different set of 
challenges than validation of methods for microorganisms themselves.  It is strongly 
recommended that methods targeting toxins be validated according to the AOAC 
chemistry guidelines and reviewed by the Chemistry and Microbiology Methods 
Committees.  The methods for preparation of the microbial toxins, dilution into the food 
matrix and end-user sampling plans may need to be defined by consulting 
microbiologists, but the validation protocol appropriate for other chemical contaminants 
should apply.  
 
Objective 6: What are effective means for articulating the uncertainty associated with 
microbiological methods? 
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Uncertainty in measurements using quantitative procedures is best estimated following an 
all-inclusive, or “top down” approach.  This approach does not attempt to estimate all 
components of uncertainty separately and it does not require a detailed mathematical 
model of how those components are combined (ISO 19036).  This approach is in contrast 
to a “bottom up” approach, which requires estimation and combination of variances at all 
stages of an analysis.  This cannot be done routinely, however, so standard, or assumed, 
variances are used which align the combined estimate to the basic method rather than the 
analytical result.  The “bottom up” approach is likely to underestimate uncertainty due to 
sources of uncertainty that are not considered.  By contrast, the “top down” approach 
makes no attempt to set generic estimates of uncertainty for specific test methods and 
rightly aligns the estimate of uncertainty with a specific analysis (or set of analyses).  The 
“top down” approach is consistent with the Guide to the Expression of Uncertainty in 
Measurement (GUM (2000), Quantifying uncertainty in measurement, 
BIPM/IEC/IFCC/ISO/IUPAC/OIML, published ISO) principles that allow combination 
of sources of uncertainty that are difficult to estimate individually.   
 
For qualitative methods, measurement uncertainty for the result cannot be expressed 
directly – instead, the observed effect is on the probability of reporting an incorrect result.  
This can be estimated with false negative and false positive rates, for those methods with 
confirmation procedures.  For some measurement procedures, uncertainty can be 
expressed as the standard error of the LOD50, as estimated by the Spearman-Kärber 
method.  This procedure estimates uncertainty where it is most important, which is at the 
border of the determination of “present” or “absent”. The work of ISO Technical 
Committee 34, Subcommittee 9 is not yet completed, so the STWG recommends active 
participation in the efforts of this subcommittee. 
 
Objective 7: How is the statistical basis of a method influenced if the homogeneity of the 
sample cannot be assumed, particularly at the very low CFU level?  How does this 
influence the performance parameter of a method?  How can samples be prepared to 
minimize this effect?  Define optimum procedures for sampling. 
 
With regard to the statistical validity of low level contamination, a supplemental 
statistical treatment is presented. This technique, LOD50, is not suggested as a 
replacement for existing tests for significant differences, e.g. Chi Squared, but rather 
offered as a data treatment that could provide some measurement of the potential 
variability associated with low level contamination. This may be particularly relevant 
given that the LOD Working Group believes that low level contamination of matrices, 
whereby fractional recovery of positives samples occurs within an inoculation level, is 
the preferred method for defining assay performance. 
 
Even though the homogeneity of the sample cannot be assumed, protocols are presented 
to minimize this impact. Furthermore, specific protocols are recommended for different 
categories of food matrices (high moisture food and low moisture food).   
 
Objective 8: Can a 2-dimensional classification matrix be developed using (1) rating of 
importance/urgency of intended use and (2) degree of validation, as the dimensional 
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factors?  Examples of intended use include: (a) response to a recently emerged 
microorganism, (b) process control, (c) regulatory screening, (d) regulatory 
confirmation, and (e) forensic attribution.  Examples of validation include: (a) published 
paper, (b) single laboratory validation, (c) multiple laboratory validation, and (d) full 
collaborative validation. 
 
Using the fit for purpose concept, the task force recommends varying degrees of 
validation for microbiological methods, depending on their intended use (see Appendix 
M).  The study design (number of levels and number of replicates) and type of validation 
[single lab (SLV), multi-lab (MLV) and harmonized collaborative (HCV), or variants on 
these per specific design recommendations] will be dependent on whether the method is 
intended for widespread use, such as a screening method, or regulatory use in one or a 
few labs and what level of statistical confidence is required by the end user for that 
intended use.  The degree of uncertainty that can be tolerated will depend on many 
factors; including urgency, cost, availability of confirmatory methods, laboratory (or 
field) analytical capabilities, etc.  However, the degree of confidence required for 
regulatory, legal and forensic applications will certainly require the highest level of 
analytical confidence in the data, but may not be as demanding in terms of speed, 
ruggedness, reproducibility (inter-laboratory variance) and cost per test.  Compiling a 
detailed set of recommendations requires further research and input from end users to 
define the limits of acceptable performance for each application.   
 
Objective 9: What are the minimum performance criteria (percentage correct answer on 
known controls with defined confidence limits) for each factor listed in Objective 8? 
 
Ideally, performance specifications or acceptance criteria should be based on risk analysis 
and historical analytical capabilities.  In practice, however, developing statistically 
derived (comparative where available) performance characteristics through validation 
studies (SLV, MLV, HCV, or studies designed for the intended purposes and needs of the 
method as recommended by the BPMM study) is more reasonable, allowing potential 
users of the method to determine its application based on the fitness for purpose concept. 
 
As the number of laboratories increases, the apparent dispersion in results will increase, 
but properly constructed confidence limits for performance measures will decrease due to 
having better estimates of the largest source of variability, the inter-laboratory variability.  
Clearly written package inserts, detailed validation protocols and method training are key 
factors to controlling this variability in the collaborative study and in the end-user 
application of the method.  
 
The task force recommends that the level of confidence for different applications of 
methods be defined using the fit for purpose approach (intended use and end user 
requirements), and then appropriate validation study designs and verification criteria can 
be developed within the constraints of practicality.  For example, regulatory agencies 
may determine that a method for detection of Listeria monocytogenes in food must have 
an LOD50 of 1-3 CFU/25g at 95% confidence in the single laboratory study.  The SLV 
study design and acceptance criteria would be based on this target value and variance.  
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Likewise, acceptable inter-laboratory variances can be used to design multi-lab and 
collaborative studies and set acceptance criteria for these studies.  In reality, the needs of 
the end user and the practicality of the study design must be balanced.   
 
A retrospective analysis of current AOAC, OMA and PTM methods using the LOD50 
approach would provide a starting point for determining target performance criteria for 
various intended uses.  A corollary to this recommendation is that OMA precollaborative 
studies must be published as these studies generally provide SLV performance 
characteristics for a wider variety of matrices than collaborative studies.  
 
Objective 10: What are the appropriate statistical tools to be used for interpretation of 
validation studies? 
 
The Statistics Working Group recommends the use of robust statistical procedures that 
are not as severely affected by extremely large or small results that can be misleading 
with more conventional procedures.  It also recommends against the removal of outliers 
from collaborative studies, except for assignable causes.  The group recommends review 
of instances of laboratories in a collaborative study that give indications of having a 
different application of a method, to see if the method is clearly defined.  The committee 
prefers strong cautions about the concept of “false negative” and “false positive” results 
due to the vagaries of microbial distribution, the difficulty of confirming all positives and 
negatives, and the likelihood of misinterpretation.  Alternative confirmation procedures 
should be considered, such as nucleic acid testing.  Any estimates of “sensitivity” for low 
level samples should be corrected statistically for the assumed number of true negatives, 
based on an assumed Poisson distribution of organisms in the samples. 
 
Chi Squared analysis according to McNemar for paired samples is recommended where a 
reference method is available.  An alternative formula for Chi Squared analysis of 
unpaired samples should be considered. 
 
It is important that collaborative (interlaboratory) studies be analyzed carefully.  The 
group recommends that current practices of deleting statistical outliers be replaced with a 
procedure to investigate laboratories that perform differently for an analyte, to see 
whether the cause can be explained, often because the laboratory had an incomplete 
understanding of the method.  In these cases the method needs to be described better. 
 
Objective 11: What are the test variables (e.g., number of strains, foods, inoculum levels) 
that should be considered for each of the factors listed in Objective 8? 
 
The basic elements of validation studies include inclusivity and exclusivity, 
characterization of the method performance, and, where applicable, estimate inter-
laboratory variation.  Additional elements include ruggedness, stability, lot-to-lot 
variation, and instrument variation (if applicable).  The test variables to consider in the 
design of a validation study include: 

• Intended use  
• Confidence required for intended use 

AOAC Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



  BPMM Task Force Final Report 8-7-06 
  Page 9 of 11 

 
• Number of inoculum levels 
• Number of replicates per level 
• Number of labs 
• Food claim (from single matrix to multiple categories)  
• Analyte claim (Genus, species, or strain) 

 
Objective 12: Can acceptance criteria be established for methods 
modification/substitution? 
 
It is logical to say that when a method is modified, its performance should be at least as 
thoroughly evaluated as was the original method.  However, recognizing that the 
modification of a method may have benefits other than enhanced performance 
parameters, a modified method cannot be required to perform better than the original.  
Further, since there are many applications for methods (screening, regulatory action, 
process control, etc.) a modified method used for a different application may be 
acceptable even though some of its performance characteristics may be inferior to the 
original method.  For example, increased sensitivity or broader inclusivity for a 
“screening method” may result in poorer specificity and/or exclusivity compared with the 
original method.  Therefore, the acceptance criteria for method modification must be 
based on the claim being made (broader inclusivity, enhanced exclusivity, increased 
sensitivity, faster time to result) and the intended use of the method (screening, 
confirmation, process control, etc.).  
 
Objective 13: Define performance criteria for discrete vs. attribute testing methods. 
 
This objective was removed from the contract on July 21, 2005, following a request for 
clarification on April 18, 2005.   The BPMM and contractor agreed that this objective is 
sufficiently covered under Objective 3. 
 
Additional Recommendation 
 
As briefly mentioned above in response to objective 3, the task force recommends that 
ruggedness testing be included as part of every microbiological method validation, 
similar to what is currently done in the AOAC Research Institute Performance Tested 
MethodsSM program.  Ruggedness testing involves the deliberate introduction of minor 
variations in a method procedure.  These minor variations should be of a magnitude that 
might be expected to occur in the hands of the end user.  Parameters to be tested might 
include reagent volumes, reaction temperature and time, enrichment temperature and 
time, and the like.  The specific parameters to be varied would depend on the test method 
technology and type (quantitative or qualitative method; bacterial, viral or toxin method) 
and would be determined on a case-by-case basis.  Ruggedness testing would target those 
parameters deemed most critical to method performance in order to provide guidance to 
the end user regarding the control of those parameters.  Ruggedness testing is included in 
the plans for future research.  
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Future Research 
 
Many of the recommendations and ideas of the task force require further review and 
development.  For a description of the suggested areas for future research, see Appendix 
N. 
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AOAC INTERNATIONAL 
Presidential Task Force on 

Best Practices for Microbiological Methodology 
US FDA Contract #223-01-2464, Modification #12 

 
Executive Summary 

Detection Limits Working Group (DLWG) 
 

EXECUTIVE SUMMARY  
 
For the Limits of Detection (LOD) Working Group, five novel recommendations are 
offered for consideration: 
 

1. In addition to more precisely defining how preparation and stabilization of 
inoculated samples should occur, the LOD Working Group has proposed an 
alternative challenge procedure, Dilution to Extinction (DTE). This methodology 
has an advantage in that it does not necessarily require the simultaneous analysis 
of the matrix by a cultural reference method. In certain instances, for example, 
where the alternative method may be more sensitive than the reference method 
DTE may have advantages in that the consideration of false positives and false 
negatives is eliminated.  The calculation of the inocula levels of the target analyte 
organism on the day of initiation of analyses is done only in the organizing 
laboratory and not in the collaborating laboratories.  The performance calculations 
may be applied to both method comparison and collaborative studies. 

 
2. Alternatives are presented for novel approaches to be taken when the proposed 

method is suspected of being more sensitive than a reference method. 
 
3. In addition to the considerations in (2) (above), specific consideration is given to 

molecular based methods validation. While the LOD Working Group is not 
specifically endorsing a position that molecular based methods are superior or 
preferred to assays based on other detection technologies, there was a consensus 
in the Group that confirmation of molecular based assays using traditional cultural 
procedures may be problematic.  Specifically, when molecular assays have 
improved sensitivity and/or a better limit of detection compared to cultural 
methods, this may result in the incorrect perception of higher levels of false 
positive results.  On the other hand, molecular assays may be more prone to 
matrix associated inhibition, leading to reduced assay specificity and a higher 
incidence of false negative results.  Certainly, for routine analysis of samples, 
alternative methods based on detection technology other than traditional culture or 
molecular are suitable for many applications.  The impact of these assay designs 
on assay sensitivity and specificity must be considered when establishing the 
limits of detection for these alternative molecular assays.   

4. With regard to the statistical validity of low level contamination, a supplemental 
statistical treatment is presented. This technique, the LOD50, is not suggested as a 
replacement for existing tests for significant differences, e.g. Chi Square, but 
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rather offered as a data treatment that could provide some measurement of the 
potential variability associated with low level contamination. This may be 
particularly relevant given that the LOD Working Group believes that low level 
contamination of matrices, including levels providing high and low fractional 
recovery and levels at or near the endpoint of recovery, is the preferred method 
for defining assay performance. 

 
5. With regard to quantitative methods validation, the LOD Working Group supports 

methodologies presented in ISO 16140.  It should be noted, however, that when 
the only available reference method is based on 3 tube MPN analysis, validation 
may best be performed using the DTE approach.  This alternative may be 
preferred because of the lack of precision associated with MPN measurements. 

 
Objective 4:  
                    
What are the scientific/statistical bases for determining the lower limit of detection for 
microbiological methods? How is the lower limit of detection validated during the 
validation of a method? How is the relative performance of a method determined as the 
lower limit of detection is approached and what is the best way of characterizing this 
performance? 
 
Summary of Recommendations 
 
It is the opinion of this Working Group that achieving an endpoint of microorganism 
recovery for the alternative method is the most reliable means for defining method 
performance and equivalence to a reference procedure. The reference procedure chosen 
may be a traditional culture procedure or a well-defined rapid method.  Endpoint analysis 
may be applied to detection of bacteria, fungi, viruses and toxigenic compounds, 
assuming that a detection procedure and a reference procedure are available.  In the case 
of viruses and toxins, enrichment procedures do not apply as these materials do not 
replicate in culture media. 
 
Even though the homogeneity of the sample cannot be assumed, protocols can be 
developed to minimize this impact. Furthermore, specific protocols can be designed for 
different categories of food matrices (high moisture food and low moisture food).  The 
Limits of Detection Work Group has divided the consideration of this topic into: 

 
i. Inoculum preparation and uniform contamination of the matrix of interest 

ii. Confirmation of results, particularly when the alternative method may be more 
sensitive than the reference method 

iii. Analyzing and presenting summarized data 
 

Discussion for sections i) and ii) pertain to contract question C1-4 and follow. Discussion 
for section iii) pertains to contract questions C1-7 and is presented in the next section. 
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When validating quantitative methods, it is preferable to inoculate the food matrix at 
three contamination levels.  These levels should occur at approximately one logarithm 
increments within the range expected in the food matrix. 
 
Preparation of Inoculum and Artificial Contamination  
 
To determine the detection limit of a qualitative method, the method should be tested on 
appropriate food samples naturally contaminated or inoculated with microorganisms 
above and below the anticipated detection limit.  For quantitative methods, a minimum of 
three inoculation levels should be prepared within the expected range of application for 
the method and the food matrix. 
 
Inoculated food samples for validation of methods should be prepared according to the 
standard protocols used for AOAC precollaborative and collaborative studies (see article 
by Andrews, W. A.: J Assoc. Off. Anal. Chem. 1987 Nov-Dec: 70(6):931-6).   
 
Recently, reference materials and certified reference materials have become available that 
may be more precise than inoculation doses prepared by traditional dilution methods, and 
may also be utilized when the appropriate levels of target organisms can be obtained (see 
below).  
 
For viruses and toxins, a high level concentration titered by an accepted reference 
procedure is prepared in the food matrix, stabilized and then diluted in the food matrix as 
described by Andrews (1987) for bacteria and fungi.     
 
Precise Reference Materials and Certified Reference Materials 
 
Recent developments have made it possible to produce samples that contain precise 
numbers of microorganisms for use as quantified standards in microbiological analyses.  
Flow cytometry has been adapted as the platform to analyze and sort cells, and dispense 
precise numbers of the cells in liquid or freeze dried forms.  These precise samples can be 
used as quantitative Reference Materials.   
 
The International Organization for Standardization has an accreditation system for 
reference materials known as ISO 34 that enables the production of Certified Reference 
Materials (CRMs).  These CRMs are supplied with a certificate that specifies the amount 
of bacteria and the variability.  
 
General Protocols for Limit of Detection Studies 
 
Determine level of viable target organism(s) in the “seed.” Normally this has been 
accomplished by MPN procedure with the reference method.  However, if the target level 
of organism present in the “seed” is higher than the background flora, this may be 
accomplished by non-selective plating or MPN procedures, followed by confirmation of 
colonies or growth that is typical of the target organism.  If a certified reference material 
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is used, the data provided on the QC certificate should be used for determination of 
inoculum level. 
 
Once the level of target organisms present in the seed is determined, the seed can be used 
to prepare method validation samples by either dry or wet dilution methods.  This can be 
done in the organizing laboratory only, or can be done in multiple laboratories by 
splitting the seed matrix and sending portions to additional laboratories.  

 
1. Wet Dilution Method 

 
a.  Prepare an enrichment of the seed matrix. 
b.  Prepare 90 ml enrichments of uninoculated product matrix (same product used 

to prepare seed) one part matrix to 9 parts enrichment broth.   
c.  Set up dilutions of the seed by adding 10 ml of seed homogenate into 90 ml of 

uninoculated enrichment, thus producing 10-fold serial dilutions of the seed 
with the same ratio of matrix to broth. 

d.  Continue to serial dilute into uninoculated enrichments, until the expected 
lower limit of detection is exceeded. 

e.  Set up multiple enrichments for each dilution for each method being 
evaluated. 
 

2. Dry Dilution Method 
 

a. Prepare serial dilutions of seed culture by blending/mixing into the 
uninoculated portions.  

b.  Analyze multiple samples (minimum of 5 per dilution) of each dilution by the 
reference method and method being evaluated. 

c. Analyze results and determine MPN based on the number of positive and 
negative tubes at the highest usable dilution according to the MPN rules. 

 
Limit of Detection Methodology to Determine Low Level Sensitivity: DTE as an 
Alternative to Use of Reference Culture Method Comparisons 
 
Certain situations may arise wherein a direct comparison to the reference culture method 
may not be the best microbiological practice. One such situation is where preliminary 
data indicate that the reference culture method may not be as sensitive as the alternative 
method.  A second potentially problematic situation occurs when the alternative method 
and the reference method employ different primary enrichment media. In such a situation 
in which there is also a need to reach a fractional endpoint to determine the limit of 
detection, the incidence of positives and negatives would be expected to be random, 
assuming that proper homogenization of the matrix was accomplished. In this situation 
the performance data, as expressed as false positive and false negative results, will be 
very high for both methods, thereby rendering methods performance statistics of 
questionable utility to the analyst. Presently, the results are reviewed subjectively for 
“reasonableness.” It is possible to employ an alternative study design to eliminate this 
anomaly in the data. This approach may be termed Dilution to Extinction. In this 
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approach, a concentrated inoculum is stabilized in a small amount of the matrix of 
interest. Subsequent dilutions are made in the matrix itself until the recovery by the 
alternative method becomes, at first, fractional and then progresses to all negative results.  
This approach also lends itself to validation of virus and toxin measurement assays where 
comparison to reference methods at low contamination levels may be problematic. 
 
Using this technique, the sample is assayed by the alternative method but there is no 
unpaired companion sample run with the reference culture method. Instead the enriched 
sample is confirmed using the appropriate isolation and confirmation technique defined 
in the reference method. By proceeding in this manner there can be no disagreement in 
the results that is attributed to only the variability in uniformity of inoculum dispersion at 
the limit of detection. In such a scheme the sample size per level may be reduced from 5 
replicates, but at least 3 replicates and as many as 5 levels may be run to reach fractional 
and finally completely negative determinations.   The number of levels included in the 
methods comparison study may be increased from the current 2 levels to 5 and the 
number of replicates per level reduced to 4.  For the collaborative study, 2 or 3 levels plus 
uninoculated controls should be run using 4 samples per level.  Data generated by this 
protocol design are suitable for analysis by the LOD50 method, which is described 
elsewhere in this document. 
 
For methods chosen to be validated using the Single Laboratory Validation (SLV) or a 
Multi-Laboratory Validation (MLV) involving 2 or more laboratories but not a full 
Harmonized Collaborative Validation (HCV), the use of the LOD50 analysis is an 
appropriate statistical methodology. This technique may be used in concert with the DTE 
methodology previously described, but only when an appropriate reference method is not 
available or different primary enrichment broths are specified. For HCV methods, the 
DTE approach may be employed in the methods comparison study. It may also be used in 
the full collaborative study, but only when an appropriate reference method is not 
available. For the collaborative study the LOD50 method may be used to evaluate the 
data. 
 
Validation against a Less Sensitive Reference Method: General Approaches 
 
The need for highly specific and sensitive diagnostic methods for pathogens and toxins 
has always been critical to food safety, public health, and national security.  For the past 
50 years, the gold standard methods used to detect bacterial or viral pathogens has been 
culture-based analyses.  Culture-based methods allow for non-directed analyses (i.e., can 
isolate/detect multiple pathogens from a single plate), are cost effective, have a true limit 
of detection (LOD) of one viable/culturable organism per sample size, and have been 
developed so as to be performed by a variety of well-trained professionals, including 
medical technologists, sanitarians, bacteriologists, and virologists who perform the 
detection and identification of the infectious agents.  With the emergence of alternative, 
technically more sophisticated diagnostic methods like the polymerase chain reaction 
(PCR), a system is needed to compare the results from the two distinct platforms to 
validate or confirm results.   
 

AOAC Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



Appendix A – DLWG Executive Summary 8-7-06 
Page 6 of 11 

 

Where applicable, the use of an established reference method is recognized as a preferred 
means to confirm the results of an alternative method. More recently, however, it has 
become increasingly apparent that, in some circumstances, the alternative method may be 
more sensitive that the traditional reference method(s) which are available for 
confirmation. In such instances it is the opinion of the Working Group that it is 
appropriate to employ alternative methodology to resolve discrepant results. Such 
additional efforts would only be required when there was a difference manifest between 
the alternative and reference methods for an individual sample. Possible approaches 
could include re-assay of discrepant samples by both methods to confirm the validity of 
the preliminary determinations, use of a third assay that is based on a different detection 
technology and for which the performance characteristics of that third method are known, 
or use of molecular markers if they exist that could confirm the presence of the 
microorganism in the growth medium.  Another attractive alternative is the limit of 
detection validation presented above, as it eliminates the mandatory use of a reference 
method. 
 
Matrix Inhibition of Molecular Methods 
 
When developing molecular based methods, specific consideration must be given to the 
potential for matrix related inhibition which may lead to both invalid and/or false 
negative determinations. A series of matrix addition experiments is in order to define at 
what, if any level, the matrix from which the isolation is attempted may be capable of 
inhibiting the amplification reaction itself. Furthermore, it is strongly suggested that, 
when using molecular based methodology in a routine testing environment, the method 
must contain an appropriate internal control which will fail to amplify in the presence of 
a matrix interference event. When validating molecular based methods, specific attention 
should be paid to results obtained using the proper internal controls to validate that no 
matrix inhibition has occurred.  
 
Objective 7:         
                        
How is the statistical basis of a validated method influenced if the homogeneity of the 
sample cannot be assumed, particularly at a very low CFU level? How does this 
influence the performance parameter of a method? How can samples be prepared to 
minimize this effect? Define the optimum procedures for sampling. 
 
Summary of Recommendations 
 
Procedures for Analysis of Data  
 
The Working Group supports long established methodologies for statistical analysis of 
test results contained in the guidelines developed by AOAC and contained in ISO16140, 
with one clarification about the appropriate use of Chi Square statistics.  Chi Square 
calculations should include confirmed positives from presumptive positive samples. In 
other words, a negative Test Method result, even if confirmed positive, remains classified 
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as a negative result, and is not considered as a Confirmed positive result when calculating 
the Chi Square. 
 
 It may also be useful to consider an alternate method of compiling data that would allow 
for the presentation of confidence intervals for the alternative method as an additional 
statistic. One such technique is proposed below. 
 
Alternate technique: LOD50
 
An alternate approach is the LOD50 Analysis. To augment and summarize the results of 
methods comparison and collaborative studies of qualitative microbiology methods, 50% 
detection endpoint values can be added to the result presentations. These can be 
calculated from the usual data obtained in such studies by the generalized Spearman-
Karber method and would not require additional laboratory work. Some examples are 
presented. This procedure is also adaptable to experimental designs that differ from that 
of the traditional AOAC validation study.  When analyzing data using LOD50 Analysis, 
the study designs for the methods comparison and the collaborative studies may differ.  
For example, combining the limit of detection approach with LOD50 Analysis, it is 
preferable to employ 4 or 5 levels of inoculation and 4 replicates per level for the 
methods comparison study.  For the collaborative study, the existing study design of 2 
levels plus uninoculated control with 6 replicates per level or, as an option, 3 levels of 
contamination plus controls with 4 replicates per level, may be preferred.  The actual 
number of levels and number of replicates per level would be determined based on the 
fit-for-purpose concept and the level of confidence required for the intended use. 
  
Introduction  
 
When an analyte is at the level of 1 particle per sample, heterogeneous distribution of 
analyte, as described by the Poisson distribution equation, becomes significant. In 
microbiology, the particle is either a single autoreplicative organism or a sub-cellular 
particle (virion or naked nucleic acid) capable of being replicated in vivo or in vitro. In 
chemistry, the analyte particle is an atom or molecule, generally in homogeneous 
solution, and routine qualitative chemical analysis is not performed at the Poisson level. 
  
The limit of detection for qualitative microbiological methods is theoretically 1 organism 
per analytical portion of a sample (or 0.04 cfu per g in the typical 25-g portion). The 
endpoint is not a sharp cut-off of the % positive samples versus concentration (MPN/g or 
cfu/g) curve due to the Poisson distribution effect. As a consequence, the limit of 
detection curve has a sigmoid-like shape so that at the concentration level of 1 organism 
per sample only about 63 % of tested samples will test positive. That is, at least about 
36% of samples will be true negatives because of failure of incurred or artificial 
inoculation (spiking) due to the Poisson distribution effect. This effect kicks in 
significantly below about 3 cfu per g.  The region of the curve at about 100% is of 
particular interest because a significant deficit in positive samples by a test method, 
relative to an ideal percent positive value of 100%, represents mainly false-negatives, that 
is a failure to detect positive samples. As the curve approaches 100% asymptotically this 

AOAC Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



Appendix A – DLWG Executive Summary 8-7-06 
Page 8 of 11 

 

region is difficult to define experimentally. Therefore, it is easier to work at the 50% 
region of the curve where the curve is steepest and close to linear. Thus the performance 
of a test method can be defined as the concentration (MPN or cfu per g ± confidence 
limits) at which 50 % positive samples are observed.  This will, allowing for the 
confidence limits of the estimate, not be less than about 0.028 cfu per g with a 25-g 
sample analytical portion. If it is significantly larger, it means the method is performing 
less than ideally because as well as true negatives there are false negatives. 
 
Fifty Percent Endpoints 

 
Expressing the limit of detection as the concentration corresponding to 50% positive 
samples ± confidence limits (usually 95%) is simply a shorthand way of summarizing the 
performance results for a method. A single number with its limits is used to express the 
result for a given food matrix. The current tabulations of results more or less nicely 
compare test and control results statistically but do not clearly tell us how well and with 
what degree of confidence the methods approach the theoretically maximum possible 
performance parameter of 1 organism detected per 25 g sample. Neither do they clearly 
distinguish between true negatives and false negatives. Nor does the current way allow us 
to easily compare the detection limits for different food matrices and/or analyte strains  

 
Fifty percent endpoint values make efficient use of all the data from control, low and high 
inoculation levels as well as providing confidence limits to make significance 
comparisons. In the current method of presenting results, attention is generally focused 
on the results from only the one of the inoculation levels used that gives the lowest 
apparent false positive rate. 

 
Some typical and hypothetical examples are given in Table 3. They were generated with 
an Excel spreadsheet program <Anthony.Hitchins@cfsan.fda.gov>. Approximate 
endpoint estimates are generally still possible with unusual positive response data 
patterns that sometimes happen with the 3-inoculation level study design (Table 1) or 
when a sample with a single level of naturally incurred contamination is used.  

 
As with the traditional treatment of the validation study results, the endpoint calculation 
is also dependent on the accuracy of the enumeration of the sample contamination. The 
confidence limits of the 3-tube MPN enumeration typically used are quite broad. This 
aspect will be addressed in a future document.  

 
The method requires just an extra calculation with the conventional validation data so its 
adoption would not be a dramatic change. It is interesting to note that the current AOAC 
experimental design already allows for a gradual detection limit cutoff. Thus, two levels 
of inoculation are specified so as to try to ensure at least one set of detection results that 
are not all positive or negative.  

 
Confidence limits will usually be broader, but still tolerable, for the endpoints from pre-
collaborative studies than for those from collaborative studies, which have a greater 
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number of replicates. For example, compare the 5 replicate and 75 replicate confidence 
limit ranges calculated for proportionate positive responses in Table 3.  
 

Table 3.   Examples of the Application of the LOD50 Calculation to Qualitative 
Microbiology Detection Method Data 

 
                                 No. positives at control, low and 

   high inoculation levels (MPN/25 g)a 

                                            _________________________ 
 
No. replicates / level        50% Endpoint (cfu/25g) and 
(labs x reps / level)           <1b MPN     2.5 MPN    10 MPN        95% confidence limit rangec  
_________________          ______        ______      _____            ________________________   
 

A. Collaborative study type data 
 
40(10 x 4) 0 16            40   1.33  (1.05-1.65) 
 
60 (15 x 4)  0                50            60                1.93  (1.75-2.10) 
 
60 (15 x 4) 1d              25             58e                  3.3   (2.90-3.75) 
  
              .       

B. Pre-collaborative study type data 
 
5 (1 x 5) 0  2             5                  3.15 (2.03-5.75) 
 
4(1 x 4) 0 1 4 2.80 (0.78-10.32)  
 
3 (1 x 3) 0  2            3 2.33 (1.28-4.23) 
 
________________________________________________________________________ 
aLevels of MPN/25g determined on the day analysis initiated. 
 

b The method requires a definite concentration value for a zero positives response. Therefore 1 MPN/25g is 
chosen for the controls (uninoculated samples) rather than inoculating replicated sample sets with inoculum 
so dilute as to virtually ensure zero positive-responses. This is fair as the proportion of positive responses 
approach zero asymptotically according to the Poisson equation. 
 
c Divide by 25 to obtain the 50 % detection endpoint expressed as cfu/g of the 25 g sample. 
 
d This value exemplifies natural or accidental background contamination at a very low level. The calculated 
mean background concentration per 25 g, m = -Ln P0 = -Ln (60-1)/60 = 0.016 MPN/25 g. Since this is <<< 
1, a value of zero positive was used for the control level. For a significant level of naturally incurred 
contamination either do not calculate a 50% endpoint value or estimate it by assuming appropriate 
concentrations for 0 and 100 % positive responses as illustrated else where in these footnotes. 
 
e  The calculation requires a 100 % response value. In this case, a 100% response was very conservatively 
assumed to be at a 100 MPN/25 g inoculum level.  
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The LOD50 method can be applied to quantitative methods when the Dilution to 
Extinction experimental protocol is used as described in the next section. 
  
Illustration of the application of dilution-to-extinction to quantitative microbiology 
using enumeration method study data 
 
The dilution to extinction method can be used to enumerate microbes in foods and other 
matrices. As a work in progress simulation, the natural micro-flora in five sub-samples 
taken from a homogenized food sample have been enumerated by dilution and plating of 
0.1 ml amounts in duplicate on plate count agar. This simulation applies either to one 
laboratory enumerating 5 samples or to 5 laboratories enumerating one sample each. The 
colony counts obtained at the various dilutions are displayed in Table 4, Panel A. The 
calculated mean colony count and 95% confidence interval for the sample are presented 
in the second and third columns, respectively, of Panel D. 
 
To apply the dilution to extinction method to this example, the actual colony counts for 
the 5 sub-samples presented in Panel A are transformed into presence and absence data in 
Panel B. To transform the data, the combined duplicated count for each subsample at a 
given dilution is designated a positive result if the combined colony count is > 0 and 
negative if it is 0. The number of positives per five sub-samples at each dilution is totaled 
(Panel B).  The totals per dilution are processed by the Spearman-Kärber LOD50 
calculation. The LOD50 result and its confidence interval represent the limit of dilution at 
which 50% of the diluted sub-samples are culture positive (Panel C).  The reciprocal of 
the product of the LOD50 value, or each of its uncertainty limits, and the volume of 
dilution tested (0.2 ml in this example) multiplied by a constant m (m=0.69) give the 
dilution to extinction estimate of the mean count of the sub-samples (Panel D, columns 4 
and 5). The constant m represents the mean count per test volume corresponding to 50 % 
negative (or positive) results. It is obtained from the Poisson relationship, Po = e-m

 , for the 
proportion of negative cultures. The data in Panel B can also be used to calculate a not 
significantly different 5-tube MPN result of 6500/g with a confidence interval of 1800 – 
20,000. Thus the dilution to extinction method performs as well as the MPN. However, it 
may be technically superior, at least in some applications, because it is a plate as opposed 
to a broth culture method. 
 
It can be seen from Panel D of Table 4 that the dilution-to-extinction and plate-count 
results are not significantly different. The dilution to extinction method was subjected to 
the experimental design of the plate count method in order to directly compare the two 
calculations. That design is not optimal for the dilution to extinction method but it can be 
modified appropriately for optimization.  
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Table 4. Enumeration by Dilution to Extinction using  the 50% Extinction Value 
 

A. Raw data 
Colony  count (CFU/ 0.1ml of stated dilution )  

Sub-Sample 10-1 dilution 10-2 dilution 10-3 dilution 10-4 dilution 
1 49;51 4;5 1; 0 0; 0 
2 62;72 6;7 1;1 0; 0 
3 40;43 4;4 0; 0 0; 0 
4 62;65 6;7 1; 0 0; 0 
5 31;40 3;4 0;2 0; 0 

 
 B. Raw Data Processed for LOD50 Calculation 

Positives (mean CFU > 0 per 0.2 ml) per 5 samples at stated dilution 
Sub-Samples 10-1 dilution 10-2 dilution 10-3 dilution 10-4 dilution 

1-5 5 5 4 0 
     

C. LOD50 Result  
Sub-Samples Dilution for 50% positive 95% confidence dilution interval 

1-5 5.013 x 10-4 (1.838 - 13.677) x 10-4

 
D. Comparison of Counts by Plating and by LOD50 

Av. CFU/plate x [1 / (0.1x10-1)] 0.69x1/[volume tested x LOD50]#   
Sub-Samples Av. CFU /g ±1.96SD CFU    

1-5 5150 2430 - 7816 6900 2518 - 18800 

 
 

Application of LOD50 to existing methods 
 
The LOD50 may best be applied when the study design includes several levels of 
inoculation as described above. In situations where previous studies exist which were 
conducted under protocols which required two levels of inoculation plus negative 
controls, this analysis technique may be applied retrospectively. The confidence intervals 
of the data may suffer somewhat from the reduced number of levels; however, valid 
interpretations may be drawn. This would be the situation with the many AOAC 
collaboratively studied microbiological Official Methods of Analysis. In these studies, 
generally two levels plus an uninoculated control level were run. The data from such 
studies may be retrospectively analyzed to calculate confidence intervals. 
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AOAC INTERNATIONAL 
Presidential Task Force on 

Best Practices for Microbiological Methodology 
US FDA Contract #223-01-2464, Modification #12 

 
Executive Summary 

Method/Matrix Extension Working Group (MEWG) 
 
A. METHOD VALIDATION - BIOLOGICAL VARIATION OF 

MICROORGANISMS AND TOXINS 
Contract Objective being addressed: 

Objective 5  
What are the scientific/statistical bases for developing validation protocols that 
adequately take into account the biological variation that exist within both the 
microorganisms and toxins produced by these microorganisms for which methods 
are developed [and the foods which will be analyzed]? 

 
Summary of Recommendation 
The MEWG has compiled a list of species and strains, taking into account immunological 
and genetic variation, that it recommends to be used in method validation studies.  As 
new variants are discovered and made available, they can be added to the list. 
 
Details of Recommendation
In order to assess the ability of a method to detect or quantify its target specifically, the 
method must be challenged with a variety of target and non-target organisms or 
molecules.  The details of the challenge will depend on two main factors:  
 

1. The method type – For example, immunoassay, molecular method or 
metabolic-based method (e.g., chromogenic agar) and  

2. The target – For example, genus (e.g., Salmonella spp.), species (e.g., Listeria 
 monocytogenes), a group of organisms (Enterohemorrhagic Escherichia coli), 
 a single molecule or a group of molecules (e.g., staphylococcal enterotoxins). 

 
Challenge studies will be designed to test variations of the target as appropriate to the 
method type, as well as test the most common food and environmental strains.  For 
example, the presence of E. coli O157:H7 can be presumptively targeted by detecting the 
O157 antigen, the verotoxin genes or the verotoxins.  Challenge studies could include 
non-motile strains, genetic variants, verotoxin expression variants (various levels of 
expression), strains that produce VT1, VT2 and VT1+2 and strains that produce VT1 
variants and/or VT2 variants, depending on the method type. 
 
In order to compare the performance of one method to another, a set of common strains 
must be used for inclusivity.  Appendix 9 is a table of microorganism strains (including 
bacterial, viral and parasitic strains) and toxin types that can be used as reference strains 
for challenge studies during the initial validation of a method.  This table takes into 
account known genetic and immunological variations of microorganisms and toxins.  It is 
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recognized that shipping microorganisms can be problematic and, therefore, the table is 
comprised of reference strains found in the American Type Culture Collection (ATCC), 
the National Center for Type Cultures (NCTC) as well as other collections.  An 
increasing number of strains are being labeled as bioterrorism agents, and in this case it 
may be beneficial to use a contract laboratory with the proper facilities and licenses to 
obtain, maintain and use these strains. 
 
Inclusivity studies, therefore, would comprise a small number of appropriate reference 
strains chosen from Appendix 9 and a larger number of food isolates for validation of the 
target analyte(s) claim.  The reference strains will allow comparison of one validation 
study to another, but it is recognized that food isolates are the most relevant strains for 
validating the claims of a method.  The food isolates must, however, be well 
characterized relative to the method technology (genotype and/or phenotype 
characterization).  By testing a sufficient number of variants within the target group, 
using reference strains and food isolates, one can be more confident in the comparative 
test results between methods and in being able to extend the method to additional strains. 
 
The number of target organisms or toxins required for inclusivity testing is dependent on 
the target scope and the known variants available and, therefore, cannot be generalized.  
For inclusivity studies, AOAC currently recommends 100 strains for validation of 
methods for the detection of Salmonella, and 50 strains for methods for detection of 
pathogens (and other organisms) other than Salmonella.  For some pathogens, for which 
number and/or availability of strains may be limited (for example, hepatitis A virus), or 
which have been highly characterized on the genetic level, it may be appropriate to use 
less than 50 strains for inclusivity testing.  It is recognized, however, that inclusivity 
testing for a method targeting a genus should logically require more strains than a method 
targeting a species. 
 
B. METHOD VALIDATION - VARIATION OF FOODS 

 Contract Objective being addressed: 
Objective 5 
What are the scientific/statistical bases for developing validation protocols that 
adequately take into account the [biological] variation that exist within [both the 
microorganisms and toxins produced by these microorganisms for which methods 
are developed and] the foods which will be analyzed? 

 
Summary of Recommendation 
Food commodity groups proposed by ISO and AOAC were extensively re-categorized 
based on physical structure, chemical parameters, bacterial load or other factors that 
would likely impact microbiological recovery and hence require different analytical 
approaches (See Appendices 1-8).  The new food classification schemes are 
recommended to be used as the basis for method validation. 
 
Details of Recommendation 
The food categories found in ISO 16140 and the AOAC Guidelines are sub-categorized 
on the basis of broad food categories and microbial load and recovery.  To make a broad 
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food claim, the AOAC Guidelines require 20 foods covering at least 6 of the 9 food 
categories in the precollaborative or single lab validation.  ISO 16140 requires testing of 
three food types from each of five categories for an “all foods” claim.  It has been 
observed, however, that methods validated with such broad claims do not necessarily 
perform well with new matrices that were not included in the validation study.  Often 
times, matrix extension is not predictable within a food category.  Therefore, the 
categories and sub-categories were redefined in an effort to make matrix extension more 
predictable. 
 
The factors taken into consideration for sub-categorization include those that can affect 
microbial recovery or detection.  Immunological and molecular methods can be affected 
by different factors, so both were considered.  The factors used to sub-categorize foods 
included lipid or fat, protein, fiber, water activity or moisture level, presence of PCR 
inhibitors, microbial load, type of processing if any, presence of preservatives, surface 
structure, pH, salt and sugar.  See Appendices 1-8 for the breakdown of each food 
category. 
 
The concept of matrix extension is complicated and there are no hard and fast rules about 
how food products can or should be categorized for this purpose.  Furthermore, this is a 
new way of thinking for most traditional food microbiologists.  As we move away from 
qualitative assays towards quantitative, molecular-based methods, there will certainly be 
developments on this front.  This document was constructed using the input of food 
microbiologists with expertise in a wide variety of matrices, as applied to many different 
detection methods, and is meant to be a guideline for future deliberations.  Irrespective of  
how closely related a non-validated matrix may be to a validated matrix, the Matrix 
Extensions working group recommends that there needs to be some type of in-house 
verification conducted before using the alternative method on any previously un-
validated matrix.  This is particularly important when results are to be used for regulatory 
purposes.  
 
To validate a category of foods, it is proposed that one matrix from each sub-category 
must be tested.  This will no doubt increase the amount of work required to claim certain 
food categories, but will also increase the likelihood that the method is applicable to all 
types of foods in that category.   
 
C. METHOD/MATRIX EXTENSION 

Contract Objective being addressed: 
Objective 1 
Once a microbiological method has been validated for an array of specific foods 
and specific strains of a microorganism: 

a) To what extent can these results be extrapolated to other foods and other 
strains? 

b)  Are there abbreviated but scientifically/statistically appropriate 
procedures/protocols by which a validation can be expanded to include 
additional foods and/or strains?   
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c) How can methods be applied to specific foods, where no validation has 

been performed? 
 

Summary of Recommendations 
By using the food sub-categorization schemes shown in Appendices 1-8, matrix 
extension is simplified.  The degree of validation required to extend a method to a new 
matrix is dependent on (1) how closely related the new matrix is to those that have been 
included in the initial validation, and (2) the level of validation initially performed (single 
lab, multi-lab, harmonized collaborative).   
 
Details of Recommendations 
With the exception of a few key methods (e.g., culture-based detection of Salmonella in 
“all foods,” and and culture-based methods for the detection of Listeria spp. and 
Escherichia coli O157:H7 in broad categories of foods), when a method is validated by 
AOAC INTERNATIONAL or by the AOAC Research Institute, the claim is limited to 
those foods actually tested in the single lab validation (SLV), multi-lab validation (MLV) 
and/or in the harmonized collaborative validation (HCV).  With sufficient representation 
within a food category, a claim can be made for that food category, although the actual 
foods tested must be clearly stated.  There is a clear need to provide additional guidelines 
for matrix extension after appropriate laboratory validation has been completed. 
 
When extending a validated method to a new matrix, then, it is logical to propose that the 
more closely related a new matrix is to a validated matrix, the higher the probability that 
the new matrix will perform similarly.  The Matrix Extension Working Group has 
expended great effort to sub-categorize foods on the basis of their impact on microbial 
growth and recovery, as well as potential inhibitory effects, on rapid method 
technologies.  These new sub-categorization schemes will be the basis for investigating 
proper protocols for matrix extension. 
 
There are three situations to consider: 

1. The new matrix is within the same sub-category or group (where there is no 
 additional sub-category) as a validated matrix 
2. The new matrix is in a new sub-category/group, but within the same class as a 
 validated matrix 
3. The new matrix is in a new class not previously validated 
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Table 1.  Data Requirements for Matrix Extension 

Then data required are: If new matrix is: 
For SLV Method For MLV Method For HCV Method 

Situation 1:  within the 
same sub-
category/group as a 
validated matrix 

None None None 

Situation 2:  in a new 
sub-category/group, 
but within the same 
class as a validated 
matrix 

Verification Verification Single Lab Validation 

Situation 3:  in a new 
class not previously 
validated 

Single Lab Validation Multiple Lab 
Validation 

Harmonized 
Collaborative Validation 

 
The data set required to extend a validated method to a new matrix is summarized in 
Table 1.  The extension of a validated method to a new matrix in Situation 1 should be 
the most predictable and, therefore, require no further experimentation.  Due to the 
proposed scheme of sub-categorization of foods, all foods within the same sub-category 
are expected to perform equivalently. Therefore, if the proposed new matrix falls into the 
same sub-category (see the appended tables) as a previously validated matrix, the 
proposed matrix does not require a verification or validation study.  The method can be 
applied to the new matrix without further study. While formal verification is not required 
in situation 1, it is good laboratory practice to perform some preliminary experiments to 
demonstrate that the method performs as expected with any new matrices being analyzed 
by the laboratory. 
 
Extending a method to a matrix in a different sub-category/group within the same 
class(Situation 2) is less predictable than Situation 1 and, therefore, would require a basic 
level of experimentation.  In Situation 2, a limited study to verify, rather than validate, 
the utility of the method for that matrix would be sufficient for SLV or MLV methods   
Verification would reveal gross effects on method performance such as the presence of 
inhibitors.  An HCV would require a Single Lab Validation study for matrices in 
Situation 2.  
 
Situation 3, in which a new class is being examined, would require full validation for 
SLV, MLV or HCV methods.  Thus, an SLV method would require an SLV study, an 
MLV method would require an MLV study, and an HCV method would require an HCV 
study to extend the method to the new matrix.   
 
The verification of method performance with a new matrix is intended to assure the user 
that the new matrix will produce neither high false positive rates (matrix is free from 
cross reactive substances) nor high false negative rates (matrix is free of inhibitory 
substances).  To this end, a protocol is proposed in which the new matrix is spiked with a 
single strain of target organism chosen from the attached Strain list (Appendix 9) or a 
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single toxin type at a level 10 to 50 times higher than the LOD for the most similar 
validated matrix.  Six replicates of the inoculated matrix and six replicates of the 
uninoculated matrix are tested and confirmed by both the alternative and the reference 
method.  If no false positive or false negative results are obtained, then the new matrix is 
verified.  If either false positive or false negative results are observed, then the study is 
expanded to a Single Laboratory Validation to define the operating characteristics of the 
method with the new matrix. 
 
The Single Laboratory Validation (SLV) should follow the study design from the original 
validation study and should measure the 50% LOD for the new matrix being studied.  
The spike levels should be adjusted according to the expected LOD for the assay being 
evaluated and for the new matrix such that fractionally positive results are obtained for at 
least one of the levels. 
 
For MLV and HCV method extension to a new food category, a Single Laboratory 
Validation is first carried out to determine the 50% LOD of the method with the new 
matrix as described above.  These data provide the basis for the MLV or HCV study.  
 
When extending a method to foods containing preservatives such as sodium benzoate, it 
is recommended that at least one verification study be performed in all cases.  
 
All studies should be carried out in parallel with a reference method, when one is 
available, in order to compare the LOD50 values of the two methods.  A test for statistical 
difference, such as Chi-Square, can be applied to compare the data sets where the same 
set of samples has been used for both methods (paired samples). 
 
D. ACCEPTANCE CRITERIA FOR METHOD MODIFICATION 

Contract Objective being addressed: 
Objective 12 
Can acceptance criteria be established for methods modification/substitution? 

 
Summary of Recommendation 
It is logical to say that when a method is modified, its performance should be at least as 
good as the original method.  Recognizing that the modification of a method may have 
benefits other than enhanced performance parameters, such as time to result or ease of 
use, a modified method cannot be required to perform better than the original.  Further, 
since there are many applications for methods (screening, regulatory action, process 
control, etc.) a modified method used for a different application may be acceptable even 
though its performance may be inferior to the original method.  The MEWG, therefore, 
defers the subject of acceptance criteria to the Steering Committee. 
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Official Standards or Guidance Documents referenced: 

1. Philip Feldsine, Carlos Abeyta and Wallace H. Andrews. 2002. AOAC 
INTERNATIONAL Methods Committee Guidelines for Validation of Qualitative 
and Quantitative Food Microbiological Official Methods of Analysis. Journal of 
AOAC International 85 (5): 1188-1200.  

2. ISO Standard 16140, Protocol for the Validation of Alternative Methods. 
3. USDA Nutrient Data Laboratory  http://www.nal.usda.gov/fnic/foodcomp/, April 

2005 
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Appendix 1  
Category 1 – Meat and Poultry 
 
Class Sub-category Examples 
A 
Water < 20% 

None Dehydrated Beef,  Dehydrated Broth, 

B.1  
(Protein < 10%) 

Most prepared foods, containing large amount 
of carbohydrates (15-30%), e.g.   Frozen 
Entrées 

B.2 
(Protein 10-30%, Lipid 10-
30%, Cooked) 

Hot Dogs, Bologna, Corned Beef 
Meat Patties 

B.3  
(protein 10-20%, lipid 10-
30%, raw) 

Raw Chicken, Raw Beef, 
Raw Pork Ground Beef 

B.4  
(protein 10-20%, lipid 10-
30%, Marinated or spiced 
raw) 

Raw Chicken, Raw Beef, 
Raw Pork 

 
 
 
 
 
 
 
 
 
 
 
B 
Water between 
20 – 80% 
 

B.5 
(protein 10-35%, lipid < 
10%, low fat, cooked) 

Chicken Drumstick, Roast Beef- (Cured, 
Dried), Beef Brisket- Lean, Braised. 
 

C 
Water 80-90% 

 Most Soups, Canned Baby Foods 

D 
Water >90% 
 

 Most Broth. 
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Category 2 – Fruits and Vegetables      Appendix 2 
 
Class Group Sub-category 

A.1: 
Low pH (<3.0-4.9) 
most fruits, including 
citrus, berries, apples 

A.1.1: 
Smooth product 
consistency 

A.1.2: 
Rough/irregular product consistency 

A: Fresh 
 

A.2:  Reduced pH (5.0-
7.0) 
melons, many 
vegetables 

A.2.1: 
Smooth product 
consistency 
e.g. grapes, apples, 
squash 

A.2.2: 
Rough/irregular product consistency 
e.g. berries, lettuce 

B.1: 
Low pH (<3.0-4.9) 
most fruits, including 
citrus, berries, apples 

B.1.1: 
Smooth product 
consistency 

B.1.2: 
Rough/irregular product consistency 

B: Frozen, and 
heat processed 
products 
 

B.2:  Reduced pH (5.0-
7.0) 
melons, many 
vegetables 

B.2.1: 
Smooth product 
consistency 
e.g. grapes, apples, 
squash 

B.2.2: 
Rough/irregular product consistency 
e.g. berries, lettuce 

C.1: 
Low pH (<3.0-4.9)  
most fruit juices, 
including citrus, berries, 
apples, tomato 

C.1.1: 
High oBrix (>60) 
high sugar fruit juice 
concentrates 
 

C.1.2: 
Moderate oBrix 
(40-59) 
 low sugar fruit 
juices 
 

C.1.3:   
Low oBrix  
(<40) 
 most fruit juices 
 

C: Juice and 
Juice 
Concentrates 
 

C.2:  Reduced pH (5.0-
7.0) most vegetable 
juices 

C.2.1: 
High oBrix (>60) 
high sugar 
vegetable juice 
concentrates 

C.2.2: 
Moderate oBrix 
(40-59) 
 low sugar 
vegetable 
juices,  

C.2.3: 
Low oBrix (<40) 
most vegetable 
juices 

D.1:  Very low aw (<0.60) (raisins, apricots) D: Dry and Low 
Moisture 
Products  

D.2:  Reduced aw (>0..60) (dried vegetables, dried apples) 

E: Fermented 
fruit and 
vegetable 
products  

(e.g., sauerkraut) No further sub-categorization 

F:  Nutmeats No further sub-categorization 
*Note:  While compounds that can interfere with detection assays may be associated with many if 
not most food matrices, the inhibitory effect of fruit and vegetable matrices may be particularly 
troubling.  Users are encouraged to consult the literature and perform preliminary experiments to 
demonstrate that the method performs as expected with new matrices of concern before routinely 
using the method on those matrices.    
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Category 3 – Dairy Products       Appendix 3 
Class Group  

by Water Content 
Sub-category 
by Fat Content 

Representative Examples 

A.1.1 
(<10%) 

Milkshake powder, Buttermilk-
dried, Dry non-fat milk, Dry 
Whey, casein** 

A.1.2 
(10-30%) 

Dry, whole milk, Grated Parm. 
Cheese 

A.1.3 
(30-70%): 

Powdered cream 
 

A.1: 
(<20%) 
 

A.1.4 
(>70%): 

Butter, margarine 
 

A.2.1 
(<10%) 

Canned Condensed milk 

A.2.2 
(10-30%) 

American cheese, pasteurized, 
Brie, Gouda, Monterey, Colby, 
Hard and Soft goat Cheese  
 

A.2: 
(20-50%) 

A.2.3 
(30-70%): 

Margarine 
 

A.3.1 
(<10%) 

Ice Cream, Low-fat Yogurt, 
Ricotta, Milkshake, Evap. Milk  
 

A.3.2 
(10-30%) 

Sour Cream, Whipped cream, 
Mozzarella 

A.3: 
(50-80%) 
 

A.3.3 
(30-70%) 

Heavy Cream 
 

A.4.1 
(<10%) 

Fat free Half and Half, Whey-
fluid, Plain Yogurt, Cottage 
cheese (reg and low fat, Milk 
substitute, buttermilk, Milk  
 

A.  
Fermented and 
Non-Fermented 
Products* 
 

A.4: 
(>80%) 
 

A.4.2 
(>10%) 

Half and Half reg. 
 

*To interpret the table, the user must first categorize the dairy product in question as fermented or 
non-fermented.  Thereafter, the sub-categorization based on water and fat content can be used.  
Note that the representative examples are not meant to be exhaustive and there are many other 
products which might fit into any one subcategory. 
**The detection of certain pathogens in some products may differ based on methods of 
manufacture (e.g. Salmonella detection in non-fat dry milk or casein products).  Consult the 
literature before applying matrix extension in these particular applications.   
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Category 4 – Egg Products        Appendix 4 
 
Class Group Examples 
A < 5% salt or sugar added shell eggs, whole eggs, egg yolks, egg 

whites, dried whole egg, dried egg yolk, 
dried egg whites, egg substitutes 

B ≥ 5% salt or sugar added whole eggs, yolks, or egg products  
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Category 5 – Miscellaneous Foods     Appendix 5 
 
Class Group  Examples 

A.1 
Flour and dry mixes 

 

A.2 
Unbaked, viable-yeast 

leavened products 

 

 
A. Cereals and Grains 

A.3 
Dough, batter, and baked 

products 

 

B.1 
Fat < 20% 

Cocoa powders, all 
Confectionery products, 
Ingredients, Coatings, 
Chocolate bars 

 
B. Chocolate* 

B.2 
Fat > 20% 

Cocoa powders, all 
Confectionery products, 
Ingredients, Coatings, 
Chocolate bars 

C.1 
Raw, Fresh 

 

C.2 
Raw, Dried 

 

 
 
C. Pasta 

C.3 
Cooked 

 

D.1 
Do not require refrigeration 
for microbiological safety 

Contain preservatives, Aw <0.85 
or pH < 4.0 

 
D. Dressings, Condiments and 
Marinades 

D.2 
Require refrigeration for 
microbiological safety 

Specified by manufacturer (does 
not apply to products that need 
refrigeration after opening) 

E. Soy Products None  
*Note:  While compounds that can interfere with detection assays may be associated with many if 
not most food matrices, the inhibitory effect of chocolate and chocolate products may be 
particularly troubling.  Users are encouraged to consult the literature and perform preliminary 
experiments to demonstrate that the method performs as expected with new matrices of concern 
before routinely using the method on those matrices.     
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Category 6 – Seafood       Appendix 6 
 

 
Class 

Group Sub-category 

A.1 
Fresh 
Water 

A.1.1 
Raw 
Fresh 

A.1.2 
Raw 
Frozen 

A.1.3 
Cooked 

A.1.4 
Dried 

A.1.5 
Cold 
Smoked, 
Marinated  
or Cured 
 

A.1.6 
Carbon 
Monoxide 
(CO)  
Treated 

A.1.7 
Fermented 

 
 
 
A. 
Finfish 

A.2 
Salt 
Water 

A.2.1 
Raw 
Fresh 

A.2.2 
Raw 
Frozen 

A.2.3 
Cooked 

A.2.4 
Dried 

A.2.5 
Smoked, 
Marinated  
or Cured 
 

A.2.6 
CO 
Treated 

A.2.7 
Fermented 

B. 
Molluscan 
Shellfish* 

 B.1 
Raw 
Fresh 

B.2 
Raw 
Frozen 

B.3 
Cooked 

B.4 
Marinated 
or Hot 
Smoked 

B.5  
High 
Pressure 
Treated 

  

C. 
Crustaceans 

 C.1 
Raw 
Fresh 

C.2 
Raw 
Frozen 

C.3 
Cooked 

    

D. 
Squid/Octopus 

 D.1 
Raw 
Fresh 

D.2 
Raw 
Frozen 

D.3 
Cooked 

    

 
*Note:  While compounds that can interfere with detection assays may be associated with 
many if not most food matrices, the inhibitory effect of molluscan shellfish is particularly well 
characterized.  Users are encouraged to consult the literature and perform preliminary 
experiments to demonstrate that the method performs as expected with all molluscan shellfish 
matrices on which it is to be applied.  In particular, the following are known to impact ability to 
recover target organisms: (1) differences (seasonal, storage, or processing related) in 
biochemical composition of the animal tissue; (2) differences in background flora arising from 
harvest water conditions (mostly seasonal) and temperature history of the product.  
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Category 7 – Animal Feed       Appendix 7 
 
Class 
(Dry Matter) 

Group  
(Crude Fiber) 

Sub-category 
(Crude Protein) 

Representative Examples 

 
A.1.1 
CP<20% 

Cereal grains 
Dried bakery waste 
Dried whey 

 
 
 
A.1 
CF<10% 

 
 
A.1.2 
 
CP>20% 

Bean varieties 
Blood meal 
Soybean meal  
Distillers grains 
Feather meal  
Meat meal 
Meat & bone meal 
Poultry by-product 

 
 
 
 
A.2.1 
CP<20% 

Alfalfa hay 
Clover hay 
Barley hay 
Cottonseed hulls 
Dried beet pulp 
Dried apple pomace 
Wheat bran 
Oat hulls 

 
 
 
 
 
 
 
 
 
 
 
 
 
A. DM>75% 

 
 
 
 
 
 
 
 
 
A.2 
CF>10% 

 
 
A.2.2 
CP>20% 

Canola meal  
Sunflower meal 
Cottonseed meal 
Coconut meal 
Avocado seed meal 

 
 
 
B.1.1 
CP<20% 

Bread by-products 
High moisture corn 
Cane molasses 
Beet molasses  
Citrus molasses 

 
 
 
 
 
B.1 
CF<10% 

B.1.2 
CP>20% 

Wet distillers grain 
(corn) 

 
 
B.2.1 
CP<20% 

Fresh alfalfa 
Fresh clover 
Wet Apple pomace 
Wet beet pulp 
Fresh grasses 
Sugar beet tops 
Ensiled forages 

 
 
 
 
 
 
 
 
 
 
B. DM<75% 

 
 
 
 
 
 
 
B.2 
CF>10% 

B.2.2 
CP>20% 

Wet distillers grain 
(sorghum, barley) 
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Category 8 – Spices*        Appendix 8 
 
Class Group 
1 Black Pepper, White Pepper, Caraway Anise, Celery, Cumin, Dill, 

Fennel, Nutmeg, Coriander, Ginger,  Paprika          
2 Onion, Garlic                       
3 Oregano, Cinnamon, Allspice         
4 Thyme, Marjoram, Basil, Sage, Rosemary 
5 Red Pepper, Chili Pepper   
6 Cloves  
*Spices are a particularly troubling category as many contain uncharacterized naturally occurring 
compounds that can interfere with detection assays.  Although this table can serve as a guideline, 
the user is strongly encouraged to consult the literature and perform preliminary experiments on 
each spice to demonstrate that the method performs as expected with new matrices before 
routinely using the method on those matrices. 
 
 
 
 
Appendix 9 – See Excel Spreadsheet 
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Appendix 9. Essential Reference Organisms and Toxins*

Species/Serotype Strain Source Species Strain/Serotype Source
Aeromonas A. hydrophila ATCC® 49140™ ATCC® 

A. hydrophila ATCC® 7965™ ATCC® 

Bacillus anthracis B. anthracis AMC strain BEI Resources
B. anthracis Ames strain BEI Resources

Controlled Access B. anthracis Davis BEI Resources
B. anthracis Kruger B1 BEI Resources

Bacillus cereus B. cereus ATCC®  13061™ ATCC® 
B. cereus ATCC® 13061™ ATCC® 
B. cereus ATCC®  10876™ ATCC®  
B. cereus enterotoxigenic producing strains - FDA TJL-14 FDA
B. cereus emetic toxin producers Pending final method research

Brucella B. abortus  (CO2 dependent and independent) BEI Resources
B. canis BEI Resources

Controlled Access B. melitensis BEI Resources
B. suis BEI Resources

Campylobacter C. fetus subsp. fetus ATCC® 15296™ ATCC® 
C. jejuni subsp. jejuni ATCC® 33291™ ATCC® 
C. coli ATCC® 43478™ ATCC® 
C. upsaliensis
C. jejuni  subsp. venerealis ATCC® 19438™ ATCC® 
C. lari ATCC® 35222™  NCTC 11457 ATCC®/ NCTC 
C. jejuni  subspecies doylei ATCC® 49351™    NCTC 11924 ATCC® /NCTC
C. jejuni  subspecies jejuni CIP 702 BEI Resources
C. jejuni  subpecies jejuni NCTC 11168 BEI Resources

Clostridium C. perfringens ATCC®  3624™ ATCC(r) Requires Export permit outside of the US
C. perfringens Hobbs serotype 2 NCTC 8238 Requires Export permit outside of the US
C. perfringens Hobbs serotype 3 NCTC 8239 Requires Export permit outside of the US
C. perfringens Hobbs serotype 13 NCTC 10240 Requires Export permit outside of the US
C. perfringens ATCC® 12919™ ATCC®  Requires Export permit outside of the US
C. botulinum Type A No longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 25763™ 
C. botulinum Type B No longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 17848™ 
C. botulinum  Type E No longer available from ATCC® or by reference strain numberBEI Resources former ATCC®  9564™ 
C. botulinum  Type F No longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 35415™ 
C. butyricum Type E No longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 43755™ 
C. argentinense  Type G No longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 27322™ 

Coxiella burnetii

Cryptosporidium C. parvum (For DNA only) PRA-67D, IOWA strain ATCC®   or Waterborne, Inc.
C. parvum (Oocyst) IOWA strain Bunch Grass Farm
C. parvum  (bovine genotype) IOWA strain
C. hominis

Cyclospora C. cayetenansis Any isolates from feces from naturally infected individuals.
Currently, no isolate or strain is maintained in a laboratory.

Enterobacter sakazakii E. sakazakii ATCC® 51329™ ATCC® 
E. aerogenes ATCC® 13048™ ATCC® 

Escherichia coli E. coli Biotype1 ATCC® 11775™  ATCC® 
E. coli Biotype1 ATCC® 51813™ ATCC® 
E. coli ATCC® 25922™ ATCC® 
E.coli ATCC® 8739™ ATCC® 

(Pathogenic) E. coli O157:H7 (toxin negative) ATCC ® 43888™ ATCC® 
E. coli O157:H7 (toxin positive) VT1 or VT2? no longer available from ATCC® or by reference strain numberBEI Resources former ATCC® 43894

Additional Recommended Species/StrainsGenus Exclusivity Species
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Species/Serotype Strain Source Species Strain/Serotype Source
Additional Recommended Species/StrainsGenus Exclusivity Species

E. coli O157:H7 (EDL 931) no longer available from ATCC® or by reference strain number former ATCC® 35150
Non O157:H7 EHEC strains
Shigella STX gene 

Giardia G. lambia Human Isolate H3 P101 Waterborne, Inc
G. muris

Helicobacter pylori

Listeria L. monocytogenes  ½ a ATCC® 51772™ ATCC® 
L. monocytogenes  ½ a ATCC® 51775™ ATCC® 
L. monocytogenes  ½ b ATCC® 51780™ ATCC® 
L. monocytogenes  ½ c ATCC® 51779™ ATCC® 
L. monocytogenes 3a ATCC® 51782™ ATCC® 
L. monocytogenes  4b Scott A
L. monocytogenes  4b ATCC® 19115™ ATCC® 
L. monocytogenes  4d ATCC® 19117™ ATCC® 
L. monocytogenes ATCC® 19111™ ATCC® 
L. monocytogenes (non-hemolytic) ATCC® 15313™ ATCC® 
L. ivanovii  5 ATCC® 19119™ ATCC® 
L. innocua  6a ATCC® 33090™ ATCC® 
L. welshimeri  6b ATCC® 35897™ ATCC® 
L. seeligeri ATCC® 35967™ ATCC® 
L.  grayi ATCC® 25400™ ATCC® 
L. grayi ATCC® 25401™  ATCC® 

Mycobacterium paratuberculosis BEI Resources Controllled Access Strain

Norovirus Norwalk – Group I Any isolates from feces from naturally infected individuals.
Snow Mountain Agent – Group II Currently, no isolate or strain is maintained in a laboratory.

Salmonella Salmonella Typhi Representatives from somatic groups B-I
Salmonella Paratyphi A Representatives from “further groups”
Salmonella Paratyphi B
Salmonella Paratyphi C
Salmonella Sendai
Salmonella Typhimurium ATCC® 13311™ ATCC® 
Salmonella Enteritidis ATCC® 13076™ ATCC® 
Salmonella choleraesuis ATCC® 10708™ ATCC® H2S negative strain  (>48 hours)

1. A minimum of 35 of the top 50 serotypes isolated in the United States from 1968 to 1998 (see attached table -An
Atlas of Salmonella in the United States, published by the CDC in 2000.

2.  Representatives from somatic groups B-I (serotypes should be evenly distributed across the groups).  A minimum
of 30 serotypes seems appropriate.

Representatives from "further groups".  These further groups should also include representative serotypes from the S. enterica, 
subspecies salamae  (II), arizonae (IIIa), diarizonae (IIIb), houtenae  (IV), and indica  (VI).  S. bongori  should also be 
included if possible.

Shigella S. boydii  serotype 2 NCTC 12985 BEI Resources
S. dysenteriae NCTC 4837 BEI Resources
S. flexneri  serotype 2a 24570 BEI Resources
S. sonnei  WRAIR I virulent BEI Resources

Staphylococcus S. aureus ATCC® 25923™ ATCC® 
S. aureus ATCC® 6538™ ATCC® 
S. epidermidis ATCC® 12228™ ATCC® 

Staphylococcal Enterotoxins A FRI-722 (FDA) Toxin Technology
B 110-270USAMRIID Toxin Technology
C1 FRI 137 (FDA) Toxin Technology
C2 FRI 361 (FDA) Toxin Technology
C3 FRI 1230 (FDA) Toxin Technology
D FRI 1151 (FDA) Toxin Technology
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Species/Serotype Strain Source Species Strain/Serotype Source
Additional Recommended Species/StrainsGenus Exclusivity Species

E FRI 326 (FDA) Toxin Technology
F (Toxic shock toxin) RFDA 485 (A,B,D)  (FDA) Toxin Technology
Non-toxigenic strain FDA D87 FDA

FDA D184 FDA
S. interimidis FDA

Vibrio V. cholerae 7th pandemic O1 strain
V. cholerae O139 (7th pandemic strain that has mutated to have a capsule)
V. cholerae non-O1/non-O139/non-toxigenic strain
V. cholerae Gulf Coast O1 toxigenic strain (non-epidemic)
V. cholerae classical cholerae  strain
V. cholerae O141 toxigenic strain that has recently emerged
V. parahaemolyticus  O3:K6
V. paraphaemolyticus  O4:K12 tdh+/trh+
V. parahaemolyticus non-pathogenic strain (tdh-/trh-)
V. parahaemolyticus clinical strain (tdh-/trh+)
V. vulnificus , biotype 1 (rRNA type B)
V. vulnificus , biotype 2 (rRNA type A)
V. vulnificus  biotype 3 (rRNA type A/B)

Yersinia Y. enterocolitica ATCC® 27729™ ATCC® 

* This table presents a reasonably comprehensive inclusivity list of reference pathogenic and related microbiological species and toxins that must be included in any validations study.
Other strains used for inclusivity or exclusivity must be characterized using nationally or internationally accepted reference methods.
The pre-collaborative and/or collaborative study protocols submitted by method devlopers or study directors for review, will be evaluted by an expxert panel to ensure that the strains selected  for
 exclusivity include a suffcient number of appropriate "nearest-neighbours" to also challenge the inclusivity of the method.
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AOAC INTERNATIONAL 
Presidential Task Force on 

Best Practices for Microbiological Methodology 
US FDA Contract #223-01-2464, Modification #12 

 
Executive Summary 

Sampling Working Group (SAWG) 
 
 INTRODUCTION 
 

As with any type of testing, an understanding of the sampling and measurement 
procedures for microbiological methods is necessary for gaining confidence that the 
obtained results “represent” the intended population or fulfill a study’s purpose.   The 
confidence of results can be undermined if care is not taken to control and minimize the 
variation of observed results due to sampling, sample preparation and measurement.  To 
address this concern, the AOAC has asked the Sampling Working Group (SAWG) of the 
BPMM Task Force to identify and address the components of sampling and measurement 
variation – specifically, the factors that contribute to and must be controlled or 
understood in order to gain an understanding of results and thereby enhance their proper 
use.  This would include identifying components across the whole process of sampling 
and measurement, including the method of measurement and the laboratory performance.   
Once these components of variation are understood, proper application of the method can 
be designed.   

 
 There has been significant work done by the International Commission on 
Microbiological Specifications for Foods (see ICMSF, 2002) to develop and provide 
guidance on the use of microbiological sampling plans for foods.  The statistics 
underlying these sampling plans, however, are not well understood (Dahms, 2004).   The 
components of variation, referred to above, were not considered in determining the 
operating characteristics of the plans; instead, rather idealized assumptions were made.  
  

In view of these issues, the objective under consideration by the SAWG of the 
AOAC International Best Practices for Microbiological Methods (BPMM) Task Force is: 
(Contract question #3) What are reasonable performance standards (criteria) when 
microbiological methods are to be used for: 1)Attribute testing, 2) Variables testing, and 
3) Process control testing.  
 
METHODOLOGY 
 

The AOAC objective set forth is broad, and therefore the SAWG narrowed its scope 
to identify important areas that could lead to further investigation. Certain assumptions 
were made. One primary underlying assumption is that a statistically representative 
sample can be obtained and that if composite samples are to be used, then these 
composites will be “representative” from a unit or amalgamation of multiple units that 
they are to characterize.  An indication that a set of samples is representative of the lot is 
that the variation between samples is less than the mean.  It also follows from these 
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assumptions that outright “errors” due to mislabeling of samples, cross-contamination, 
incorrect readings from a machine, etc. would not be addressed.  These possibilities are 
important to consider, and should be part of any well-designed laboratory standard 
operating procedure (SOP), but are beyond the scope of the SAWG.   

 
The issues to be addressed by the group do not depend, per se, on whether the type of 

test being considered is an attribute or variable test.  In other words, the recommendations 
presented below are being made with regard to qualitative tests as well quantitative tests 
that are more familiar to AOAC.   In lieu of the above discussion, the SAWG considered 
the following tasks:  

 
1) Identify and address performance components of variation relative to intra-

laboratory, and inter-laboratory performance. 
2) Identify and address components of variation of measurement error associated 

with the method within the laboratory. 
3) Identify process control statistics and recommend a set of performance standards 

for statistical process control using microbiological measurements.  
 
I. Components of variation relative to intra-laboratory and inter-laboratory 
performance.  
 

The SAWG believes that to determine method performance, controlled inter-
laboratory studies are needed.  The recommendations are closely aligned with AOAC 
recommendations for collaborative studies of chemical analytical methods. The 
recommended performance standards are:  

 
1.  Ruggedness tests should be performed that attest to the robustness of the 

analytical procedure under expected normal operating procedures.  Ideally 5-7 
critical steps of the procedure should be identified, and the nominal, upper and 
lower specs for each step evaluated. 

 
2.  Microbial test validation should include estimates of test sensitivity, 

specificity, and accuracy.  
 
3.  A Collaborative study consisting of 5-10 laboratories should be conducted to 

determine reproducibility and repeatability standard deviation measures that 
cover the range of levels expected to be encountered and that are of regulatory 
interest. If this is not possible, then at least an intra-laboratory study, using 
more than one analyst, separated from each other, should be conducted.  From 
these results, formulas predicting the standard deviations as a function of level 
should be estimated.  

 
4.  For QA purposes, laboratories should establish a range of acceptable results 

for individual samples based on confidence intervals using the repeatability 
standard deviations.  Also, laboratories should establish process control 
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procedures, and use statistical process control methods for tracking 
performance over time. 

 
5.  When reporting results, the range given as the 95 percent confidence interval 

on the measurement should be stated. 
 

II. Identify components of variability within the lab.    
 

The SAWG focused on examples of method protocols to examine where the 
measurement error variation can occur.  Enclosure A presents a detailed account of our 
identification of major sources of sampling variation that occur within the laboratory. We 
are recommending that laboratories develop a protocol for maintaining process control at 
critical points of the analytical procedures. The recommended performance standards for 
laboratories are: 
 

1.  Establish a process for listing sources that contribute to the variability of 
results in the laboratory (this should be developed).  

 
2.  Perform intra-lab repeatability studies to determine statistical distribution of 

results associated with the sources of variability. 
 
3. Establish statistical process control procedures (based on split or check 

samples) within the laboratory to monitor performance. 
 
4. For methods that involve confirmation of particular types of organisms where 

interfering organisms are expected, conduct a study to determine the 
proportions of targeted and interfering organisms in samples.  This will help 
determine how many confirmations are needed to minimize false negative 
outcomes.   

 
III. Statistical Process Control (SPC).  
 

SPC is a very broad area which SAWG believes is not well known to the 
scientific community.  Consequently, for this task, the SAWG presents a general 
introductory discussion (Enclosure B) together with numerous examples.  The suggested 
performance standards are general principles that should be followed, representing 
normative practice.  These are: 
 

1.  Charts of plots of the output data are necessary for gaining the full benefit of 
doing SPC. 

 
2.  When the process is under control, the results plotted on a statistical process 

control chart should be normal or nearly normally distributed.  In cases where 
this is not true and an alternative known distribution cannot be determined, 
transformations of the data should be considered. 
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3.  During some “initial” period of time, when it is presumed the process is 
operating in a relatively stable manner – or is in control, the distribution of the 
measurements should be estimated and rules for evaluating the process should 
be formulated. Use of about 20-30 results (samples) or more for computing 
means and standard deviations or other summary statistics needed for 
distribution estimation is a desirable goal. However, this stipulation can be 
relaxed and thus should not hinder or limit the use of control charts if 
resources do not permit, in a timely fashion, analyzing this number of 
samples.   

 
4.  Rules for evaluating process control should be set with aids assessing the two 

types of errors: Type I (α-probability), declaring the process out of control 
when it is not, and Type II (β- probability), not declaring a process out of 
control when it is.  Typically there are two measures that are used for 
assessing these errors: 1) the probabilities of the two types of errors at a given 
time  and 2) the average run length (ARL) or expected number of samples 
before an out of control signal (one of the rules being not met) is seen. When 
developing rules, the α-probability (Type I error) should be kept low, for 
example, below 1%, or the ARL should exceed 100 (corresponding to less 
than 1% α - error). 

 
5.  When a process is thought to be “in control,” the limits for assessing 

individual results are set at a distance from the mean (target), expressed as 
standard deviation units from the mean or process target value.  The 
recommended and default distance is 3 standard deviations.  Additionally, 
characteristics related to food safety may be targeted more than three standard 
deviations above or below critical limits, however statistical process control 
limits should still be placed 3 standard deviations from the target value. 

 
6.  There are numerous run/ trend rules that can be used, such as runs test, 

moving averages and CUSUMS, for detecting shifts in the process mean; and 
rules for detecting shifts in the process variation or other auto-correlated 
patterns that could be due to a systematic source of variation.  The use of any 
of these may depend upon particular expected conditions when the process is 
out of control. 

 
7.  Specification Limits are not Statistical Process Control limits. Specifications 

are either customer, engineering, or regulatory related.  Specification limits 
should not be placed on a control chart insofar as these might be considered as 
process goals thus influencing the efficacy of SPC procedures for ensuring a 
controlled process, and thereby undermining the safety of the product.  

 
For more details concerning the specific performance criteria, please review the 
referenced Enclosure materials. 
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Introduction - Sampling Working Group 
 

As mentioned in the executive summary on sampling, an understanding of the sampling 
and measurement procedures is necessary for obtaining confidence that the obtained results 
“represent” the intended population or fulfill a study’s purpose.   The confidence of results can 
be undermined if care is not taken to control and minimize the variation of observed results due 
to sampling and measurement.  To address this concern, the information below is presented as a 
foundation for and linkage to the two documents on measurement error (Enclosure A) and 
statistical process control sampling (Enclosure B).   

Sampling and Measurement 
 
 An important reason, and the one that is of interest for this Committee, for analyzing 
samples in the first place is to characterize some aspect of the distribution of the “true level”, x, 
or most generally, to determine the distribution of x, within some well-defined population of 
product that the analyzed samples are “representing.”   The values of x could refer to levels or 
densities of some measurand or could refer to whether or not a pathogen is present in a sampled 
material.   The results are a collection, {yj, j = 1, …n} where n is the number of samples (here 
assumed randomly drawn for some population, with equal probability of selection). Thus values 
of y refer to the measured result, either a measurement of level or density of some measurand, 
or whether or not the pathogen was found.  The value of y thus represents the “known” 
evidence, from which an inference is made regarding the possible values of x.  In the 
interferential process there is always uncertainty associated with any conclusion or 
characterization made about possible value of x. 
 
 Mathematically this uncertainty can be represented by a “likelihood” function. This 
function can be derived in stages.  First consider the probabilities of possible values of y for 
hypothetical values of x,  g(y|x).  This is a function of the true value of x.  However, x is not 
known, but rather y is known. The values of x, being unknown, are (next) assumed to occur 
with some probability density which can be labeled, f(x).  With this supposition, the (full) 
probability relationship between y and x can be written down mathematically. To distinguish 
the case of y being known and x being unknown (from the case of x being known) the phrase 
“probability of y” is not used, but rather the phrase used is the “likelihood of y.”  More 
specifically, if the density of the distribution of x is f(x), then the likelihood (L) of obtaining a 
value of y can be expressed as a joint probability integral equation: 
 
    L(y) = ∫g(y|x)f(x)dx     (1) 
 
This equation includes results reported as non-detects, ND, as a possible value.  That is,  
 

L(ND) = ∫g(ND|x)f(x)dx     (2) 
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where g(ND|x) is the probability of ND (of getting a non-detect, or a false negative) given a true 
value of x in the sample.  An estimate of f(x) can be derived from the above integral equation, 
assuming g(y|x) is known.   If f(x) is of known (or assumed to be a specific) mathematical form, 
parameterized with parameter vector, θ, of (often) unknown values, then using maximum 
likelihood (MLE) estimation or method of moments (MOM), estimates of values of θ can be 
obtained. 
 
 Often, the forms of f(x) and even g(y|x) will not be known, but their first two moments 
(mean and variance) can be estimated and be considered sufficient for many purposes.  An 
example of this is with statistical process control (SPC), discussed in Enclosure B (SPC 
document), where SPC procedures depend upon specifying the mean and variance of the 
process.  If it is assumed that the relationship between the expected value and variance of y 
given x and x is known, then the mean and variance of the distribution of x can be obtained.  
The relationship for the means and the variances are: 
 
   E(y) = Ef(E(y|x))      (4) 
                             Var(y) = varf(E(y|x)) + Ef(var(y|x))     (5) 
 
where Ef and varf refer to the expected value and variance of the distribution with density 
function f, and E and var, without subscripts, refer to expected value and variance of 
distribution g.  The terms on the left are determined directly from the collection of {yj, j = 1, … 
n}of sample results; the terms E(y|x) and var(y|x) are assumed known functions of x, so that the 
above equations can be used to solve for Ef(x) and varf(x).  
 
 A simple example is to assume that var(y|x) is some linear function of x: var(x) = ax + b, 
where a and b are constants.  For some methods, such as methods of measuring densities of 
chemical residues, the coefficient of variability (CV) is assumed to be equal to 100(a + b/x), 
when x is the true level of some analyte, so that the variance, var(y|x), would be (ax+b)2.  
Assuming that E(y|x) = x – that is, the method is unbiased - the above equations become: 
 

E(y) = Ef(x)       (4a) 
Var(y) = varf(x) + Ef(ax+b) , or in the second case,  (5a)                      

 
Var(y) =[1 + a2] varf(x) + [aEf(x) + b]2   (5b) 

 
If E(y) and Var(y) can be estimated from a priori information, for example, from inter- or intra-
laboratory studies, then Ef(x) and varf(x) can be estimated by solving the above equations. 
 

Often there is a need for imputation or assigning a value of y when the imputed value is 
a non-detect value (ND).  A standard procedure for imputation is to impute ½ the limit of 
detection (LOD) (EPA, 2000), and then compute the average and standard deviation using the 
imputed values for ND. A justification of this imputation procedure could be based on the 
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“principle of indifference,”1 which here would invoke an assumption that the values of y that 
could have been measured would be uniformly distributed between 0 and L (where L = LOD).  
In other words, if it is thought that y represents an estimate of x on a sample, then the “best” 
estimate of x given that y is below the LOD = L, by the principle of indifference, is L/2.   This is 
a confusing assumption and its very premise leads to contradictions, as is well known; for 
example, by the same “principle of indifference” applied to the square root of the true level, x1/2, 
the imputed estimate would be L1/2/2, so that for x, the imputed estimate would be the square of 
this value, specifically, L/4. Ideally if the true distribution were known (or assumed) then values 
for ND results could be derived using statistical estimation procedures.  Based on assumptions 
for the distribution, procedures for imputation of results reported below the LOD have been 
proposed (Cohen, 1959; Persson and Rootzen, 1977; Singh and Nocerino, 2002). In any case, at 
least with chemical measurements, the LOD/2 imputation is commonly used (EPA, 2000) and 
would permit the above calculations to proceed.   

Importance for sampling 
 

It might be (as is often the case) that the percentage of the variance component (of the 
total variance) due to measurement is small relative to the variance component due to sampling 
variation.  However, even in this situation, the variance of individual results can be of such 
magnitude to affect significantly the confidence that is associated with individual results.  For a 
simple example, assume that the distribution of APC counts is lognormal, and that the mean of 
the log10 of the sample values, y, is 3 and the sample standard deviation is 1.  Since we are 
assuming that the distribution of the log10(y) is normal, a 95% probability interval would be 
approximately 1 (log10) to 5 (log10).  Consequently, if there were a specification that “permitted” 
no more than 4.5 log10 on a sample2, then based on the normal  distribution for the logarithm of 
the APC counts, assuming a mean value of 3 log10 and a standard deviation of 1,  there is a 
probability of 6.7% that a sample value would exceed 4.5 log10 (the z-score corresponding to the 
limit, 4.5 log10 is z =( 4.5-3)/1 = 1.5, which has associated cumulative probability of  93.3%, so 
that probability of being greater than 4.5 is 6.7%).    
 
 For simplicity here, assume that the distribution of log10(y), given a sample with a true 
level of x, such that the expected value of log10(y) is log10(x), and the standard deviation is 0.3 
log10, independent of the value of x.  From Equation 5a, 12 = Var(log10(y)) = varf(log10(x)) + 
0.32, so that the population variance of log10(x) is 1- 0.32 = 0.91; and the standard deviation of 
log10(x) is (0.91)1/2 = 0.954.  Hence the 95% probability interval, symmetric about the mean of 
the log10 of the true levels for the population, is 1.13 to 4.87 log10 and there would be a 6.3% 
probability that a sample value would exceed 4.5 log10.  The difference between the two 

 
1 Also referred to as the “principle of insufficient reason” developed in the 19th century, and later renamed ‘priciple 
of indifference’ by the economist John Maynard Keynes (http://en.wikipedia.org).  It basically stipulates that 
lacking any other information one can assume equal probablites for a set of events.  Where the events refer to 
values of continuous variables the principle leads to ambiguity as described within the text.   
2 In some situations, a specification would refer to the true level in a sample so that it would be necessary to know 
the measurement error to determine compliance.  Some adjustment might be made then to account for measurement 
error.   
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intervals is not large (1 to 5 versus 1.13 to 4.87 log10). Now, if the measurement standard 
deviation were reduced by a factor of 2, to 0.15 log10, then the probability of a single result 
obtained on a randomly drawn sample being greater than 4.5 log10 would be about 6.0%, 
reduced from 6.3%, hardly a change at all. 
 
 On the other hand, the impression of the effect of reducing the standard deviation of the 
measurement error could be different when considering its impact on inferring a value for 
sample using single measurements.  For a single measurement, a standard deviation of 0.3 log10 
would imply that, the 95% confidence interval associated with that true sample value of 
log10(x), would be log10(y) – 0.588, log10(y) + 0.588, a range of 1.176 log10, or a factor of  about 
15.   If the true value for a sample was 4 log10, which is well below the specified limit amount of 
4.5 log10, there would be about a 5% chance that a measured value would exceed 4.5, assuming 
a standard deviation of 0.3 log10 for the measured result.  If the standard deviation were reduced 
by a factor of 2, then the range of the 95% confidence interval associated with a measured value 
would be log10(y) – 0.294, log10(y) + 0.294, a range of 0.588 log10, or a factor of about 3.9, a 
seemingly substantial reduction.  The probability of a result being greater than 4.5 log10 given a 
true log10 value of 4 would be 0.043%, virtually zero, compared to the 5% when the 
measurement standard deviation is 0.3 log10.  This could be considered a significant change.  
 

Thus, overall, when considering the effect on sampling populations, reducing the 
measurement standard deviation from 0.30 to 0.15 does not amount to a significant change in 
the operating characteristic (OC) curve (which provides the probability of acceptable results 
given assumed true conditions (Juran, JM, 1951) when the results of the measurements are 
being used for assessing a distribution of levels within some population - in our example, the 
probability of failing was reduced from 6.3% to 6.0%, about a 5% reduction of the probability 
of obtaining failed samples.  The effort needed to reduce the standard deviation by a factor of 2 
would be at least 4 samples per analysis, and perhaps more, as discussed below.  As shown by 
way of this example, it may not be worth the extra time and effort to increase the number of 
analyses per sample.  However, when inferring a true value for a specific sample, perhaps in a 
legal setting, the reduction of the standard error of the mean might be significant, as illustrated 
by the above example. 

 
In determining how many samples would be needed to reduce the standard error of the 

mean (compared to the standard deviation of a single result), the magnitude of the variance 
components associated with the sampling and measurements would need to be known.  For 
example, very simply, the standard deviation may include significant day-to-day effects.  In 
other words, samples analyzed on the same day would not be independent results, but rather 
would be correlated within the population of possible results that would be obtained for the 
sample if it were analyzed on different days with different reagents and so forth.  This notion is 
expressed by identifying a parameter, δ, called the intra-day correlation, which is the proportion 
of the between-day variance to the total variance -  that is, the sum of the between-and within-
day variance.   For n samples analyzed per day for m days, the variance of the mean would be  

 
    Fm

2 = F0
2δ/m +   F0

2 (1-δ)/(mn)     (6) 
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where the first term on the right side represents the contribution of the between-day variance 
component (sampling for m days), and the second term represents the contribution of the 
within-day variance component (for mn samples).   For example, for a value of δ of 0.3, the 
mean of 56 samples, analyzed over 8 days, 7 samples per day has the same variance as that of 
the mean of 98 samples analyzed over 7 days, 14 samples per day.  An intra-day correlation of 
0.3 is large, but not unbelievable, particularly for microbiological measurements wherein 
“causes” of contamination or high levels of organisms could vary day- to-day by substantial 
amounts.    
 

Assume that a result needs to be obtained daily for some quality assurance or control 
purpose and thus results are analyzed in one day, so that m = 1.  A question might be: how 
many samples are needed (in one day) in order that the standard error (of the mean) is a fraction 
r of  the standard deviation, F0, of a single result?  From Equation 6, assuming δ < r2, the 
number of samples needed would be: 

        2

1n
r
−δ

=
−δ

      (7) 

 
Thus, for example, if δ = 0.1 and r = ½, 6 samples per day would be needed to have a variance 
of the mean be ½ the variance of a single result.  
 
Summary 
 

For microbiological measurements, true levels of the measurand are often highly 
variable over time, so that in general, given resources for a fixed number of samples, more 
samples over time with less samples per day, and more days of sampling is preferable if the 
purpose of sampling is to examine trends or get a good profile of the distribution of the 
measurand over time. However, if decisions are to be made on sample results for a given day, 
to ensure that product is safe then more samples per day might be needed.   
 
Composite sampling 
 

To minimize costs, composite sampling can be considered, when k samples (for example 
in one day) are divided into m composites of n samples (so that k =mn). The variance of the 
mean of the results obtained from the m composite samples would be: 

 
 Fm

2 = (F0
2δ +Fa

2) /m +  F0
2 (1-δ)/k = F0

2(1+ δ(n-1))/k  + Fa
2/m   (8) 

 
where, δ now refers to the intra-composite correlation, F0

2 is the between sample variance, 
ignoring measurement variance, and Fa

2 is the pure analytical measurement (referred to as 
repeatability) variance.  From Equation 8, it is seen that it is desirable that δ be small, which 
would be the case if it could be expected that true differences of levels between composite 
samples be negligible.  Stratifying the population being sampled or selecting systematically 
from every mth sample to form composite samples (for example, from 12 samples, selecting the 
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first, fourth, seventh and 10th as the first composite, and so forth, for 3 composite samples 
consisting of 4 samples each) would effectively minimize the value of δ. Assuming δ is small 
and can be ignored in Equation 8, the variance of the mean would depend upon the relative 
magnitude of F0

2 and Fa
2; if m (the number of composites) is small, then, even with n being 

large, the variance of the mean could be large since the term Fa
2 /m could be large.   

 
 However, often microbiological analyses are not able to handle large samples, and thus 
there may be a limit to the size of the composite samples.  The limiting factors regarding the 
size of composite samples are the container size required for a (for example) 1/10 dilution, the 
ability to homogenize large samples and incubator space.  Some laboratories may be equipped 
to handle large size samples, using walk-in incubators and such; however, most laboratories do 
not have such equipment.     
 
  Consideration also needs to be given to the sensitivity of the analytical procedure as a 
function of the sample size.  In other words, analyzing composite samples might introduce a 
bias if the sensitivity of recovery were affected by compositing.  These considerations might 
lead to limiting the number of samples, n, within a composite sample.  This in turn might make 
less innocuous the assumption of a small δ.  
 
 Suppose it is decided that M grams (or ml if liquid samples are being considered) is the 
size of the composite sample.  That is, the number of individual samples, n, in a composite 
sample, times the weight, w, (or liquid volume) of each individual sample, nw, should be equal 
to M.  The total number of samples, k = mM/w.  Equation 8 for the standard error of the mean 
of m composite sample results becomes: 
 

m
n

mM
w aw

m

22
02 ))1(1(

σ
δ

σ
σ +−+=                                                         (9) 

 
where the symbol σ0w refers to the between-sample variance for samples of weight (or volume) 
w.  As w decreases (and thus increasing the number of samples, k) it would be expected that σ0w 
would increase.  The relationship between the two quantities: w and σ0w would need to be 
explored in order to design an optimal composite sampling plan. 
 
 While composite sampling can lead to decrease of costs of sampling, it should be 
pointed out that the results obtained from composite sampling can mask information concerning 
the distribution of the levels of the measurand within the population being sampled.  
Information of the distribution of levels might be important for evaluating process control and 
for risk assessments that are primarily concerned with estimating risks typically associated with 
(occasional) high levels of some pathogen in food.  Hence, for designing sampling plans, an 
understanding of how the results might be used is needed.   
 

Designing sampling plans thus requires knowledge of variance components related to 
measurement and sampling variability associated with the sampling unit.  In the SPC document 
(Enclosure B), the discussion does not address the effects of measurement error explicitly; 
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rather the document concentrates on the issues related directly to SPC, and estimated variances 
would include the contribution due to measurement.  The total variability (due to sampling and 
analytical measurement) should be known or estimated in order to rationally design sampling 
plans– regarding the number of samples, composites, and repeat analyses that might be needed -
and for constructing realistic OC curves.  Information concerning specifics of this analysis can 
be found by reading Enclosures A, as well as reviewing the references in each case. 
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Enclosure A – Measurement Error 

Methodology 
 
As mentioned in the executive summary, the AOAC questions posed are broad and the 
SAWG therefore narrowed its scope to identify important features that could lead to 
further development, as needed. Certain assumptions were made. One primary underlying 
assumption is that a “representative” sample can be obtained.  Thus SAWG did not 
address outright “errors” due to mislabeling of samples, cross-contamination, incorrect 
readings from a machine, etc.  
 
To address measurement error, the SAWG examined a publication that thoroughly 
attempts to quantify the measurement variation of basic microbiological methods 
(Niemela 2002).  This document focuses on the measurement error associated with 
counting colonies and/or other discrete entities.  The SAWG report identifies important 
factors that contribute to laboratory measurement variability and recommends that these 
factors be addressed with all methods for the purpose of controlling them and quantifying 
them, if possible. 
 
The SAWG focused on examples of method protocols to examine where the 
measurement error variation can occur.  Examination of these examples led to the 
identification of major sources of variation that the SAWG will consider: 
 

A. Dilution  
B. Recovery  
C. Counting  
D. Organism confirmation  
E. Organism variability 
F. Overall statistical considerations 
 

A short description of the each of the sources of variation is given below, followed by 
section F that provides an example of how the operating characteristics for a plan could 
be constructed taking into consideration these sources of variation.  
 
Both the enumeration of microbiological counts and the identification of microbes’ genus 
and species involve a number of steps.  Some of the steps include: sample collection, 
sample preparation including dilution(s), and (in some cases) maceration or mixing (or 
both).  In determination of genus and species of pathogenic organisms, there is often an 
incubation step in a selective media prior to implementing one of the methods used for 
detection.    All of these steps may have some error or variation associated with them. 
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A. Dilution error 
 
Dilution errors are those errors associated with the sample preparation from the time a 
sample is gathered until the time the organisms are either counted or identified.  
Without proper training, the opportunity for error could be substantial, and the impact 
may vary from small to great.  The first dilution error is initial sample size.  If a 
sample of a particular size is to be placed into a fixed amount of diluent, the size of 
the initial sample (either larger or smaller than nominal) would cause under-dilution 
or over-dilution error, respectively.  Similarly, if a surface area constituted the 
sample, then sampling an area larger than the specified area would result in an under-
dilution, and an area smaller than the specified area (or incomplete swabbing of the 
specified area) will cause over-dilution. 

 
With regard to setting up blanks for dilutions, some additional errors may occur. First, 
volumetric errors related to the use of graduated cylinders and pipettes could occur.  
Second, dilution blanks may be prepared volumetrically correct, but then autoclaved 
causing volume reduction.  Errors may also be associated with incorrectly reading the 
meniscus in graduated cylinders and pipettes. Pipettes may differ in the way volumes 
are correctly measured. Plastic and glass pipettes’ and cylinders’ menisci are not read 
the same way, and may not have the same reliability. 

 
Pipetting errors, of course, can occur for all dilutions after the original sample is 
placed into the original blank and the subsequent dilutions are made.  Also, when 
micro-volumes of samples are pipetted into test containers, errors can occur due to 
pipetting technique. Additional errors may occur due to debris restricting the filling or 
emptying of the pipette or pipette tip, thus causing a non-representative sample to be 
placed in the testing container. 

 
These errors do not include the obvious errors associated with spillage or leakage, but 
if unobserved or uncorrected, these factors could contribute greatly to the error 
associated with dilution. 
 
B. Recovery error 

 
The recovery rate for a microbiological method is the proportion of target cells (or 
spores) in the test sample that is presented to the detection method. With rare 
exception, recovery entails multiplication of the target cells to the high numbers 
required by the detection portion of the test. If multiplication does not occur or is 
impeded, the microbial count is underestimated. Factors confounding multiplication 
are as follows: 
 
1. Incubation conditions: Test methods specify the time, temperature, and 

atmosphere of incubation. Ranges are generally provided for time and 
temperature. In many cases these ranges may be very broad and may compound in 
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methods that have multiple steps, e.g. liquid culture incubation for time +2 hr, 
temp + 1C, then subculture incubation for time +2 hr, temp + 1C, and finally agar 
plate culture for time +2 hr, temp + 1C. Validation studies rarely validate the 
extremes, as doing so is costly. 

 
2. Media: Biological media is generally not calibrated from lot-to-lot or supplier-to-

supplier, with perhaps the exception being Standard Methods Agar which is 
calibrated lot-to-lot per supplier. A great deal of variation can and does occur 
related to the components of basic culture media. Selective media adds another 
level of variation, since selective agents may vary in toxicity depending upon lot, 
preparation, and storage. 

 
3. Product Matrix: Organisms may be in or on a product, in clumps or as single 

cells. Accurate enumeration requires full release from the matrix for repeatable 
enumeration. Some foods may be inhibitory to growth—spices are common 
examples. In addition, foods may contain competitive flora which may inhibit 
growth or outgrow the target population. 

4. Target Flora: Recovery rates may vary among genera, species, or even subspecies 
and strains. The target flora may be injured and thus variation in recovery may 
increase.  

 
C. Counting error 

 
It is often believed (assumed) that the distribution of the results of a count follows the 
Poisson distribution.  This is based on assuming that the cells are distributed 
uniformly so that, per unit of product, there is a single expected level, r.  From this 
assumption, it can be shown (Jaynes, 2003: Probability Theory: The logic of Science 
Cambridge University Press) that the distribution of the number of cells in any 
volume, v, of product is a Poisson distribution with expected value rv, and standard 
deviation (rv)1/2.   However, cells, larvae or other types of microbiological 
contaminates are usually not distributed in nature as a Poisson, but rather are 
distributed in clumps, or colonies, either because there are factors that would attract 
microbes to cluster or because of the cell division  process creating a tendency for 
colonies to form (e g, Campylobacter).  Because the assumption of uniformity cannot 
be assumed, in order for the Poisson distribution to hold, it is necessary to 
homogenize the sample.  Variation beyond that expected from the Poisson thus can be 
introduced when the sample is not homogeneous.  
    
Additional variation is also introduced due to the non–exactness of the counting of 
colonies of a specified species.  The counting may differ appreciably between persons 
for a given sample on a given medium. Familiarization thus with the counting 
procedures is an important requirement for analysts. 
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D. Organism confirmation error - selection and testing of colonies

 
During many analytical procedures colonies need to be selected for further testing. 
Methods usually specify that a certain number of colonies, or a certain proportion of 
the colonies meeting the description of the target species are selected for further 
testing. The sampling errors involved in this procedure depend upon the differential 
power of the primary isolation medium and upon the ratio of target species to non-
target species that meet the description of colonies to be further selected. 

 
D.1. Differential power of primary isolation medium. The differential power of the 
medium is the ability of the medium to cause target species to appear sufficiently 
different from non-target species, to facilitate the efficient selection of the target 
species for confirmatory testing (if required). 
 

The differential power of the medium may be graded as follows:  
 

Absolute: in which every colony on the plate is counted and no further 
testing is required. Examples: Standard Plate Count, Aerobic Plate Count. 
 
Highly differential- in which we can be almost certain that colonies that 
meet the description belong to the target species, other colonies are clearly 
differentiated. Example: B. cereus on MYP or PREYPA or PEMBA.  
 
Moderately differential- in which colonies meeting the description of 
typical strains may belong to the target species. Some non-target species 
may fail to be differentiated from the typical colonies of the target species 
and/or some atypical colonies may belong to the target group. Examples 
include: Salmonella sp. on BSA, Coagulase positive staphylococci on 
Baird Parker Agar, Listeria species on MOX. 
 
Poorly differential- in which colonies of the target species and some 
(related) non-target species are not differentiated. Example: L. 
monocytogenes on Oxford Agar or PALCAM. 

 
The magnitude of error that may be associated with this factor increases as the 
differential ability of the medium decreases.  

 
D.2. Ratio of target to non-target colonies on the primary isolation medium.  The 
ratio of target to non-target colonies affects the ability of the operator to select the 
most likely colonies for further testing. This factor operates in two different ways that 
may interact: the selectivity of the medium and/or the differential power of the 
medium. 
 
The selectivity of the medium refers to the ability of the medium to suppress non-
target species. If a medium is highly selective, it is more likely that a colony on the 
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agar will belong to the target species. In extreme cases, poorly selective media may 
allow non-target species to overgrow target species to the extent that the target 
species cannot be detected (for example, Citrobacter overgrowing Salmonella on 
XLD agar). In many cases, this reason is not a large problem if the medium is 
sufficiently differential. 
 
The differential ability of the medium is discussed above. If poorly differential agars 
are used, then selecting colonies of the target species will depend entirely on the ratio 
of target and similarly-appearing non-target species. For example, both L. 
monocytogenes and L. innocua will have identical colonies on Oxford Agar, but only 
one of these species is the target. In qualitative tests: if the method requires a number 
of colonies to be selected, and only one (1) colony needs to be confirmed as positive 
for the target species to be reported as detected, then it will be possible to calculate 
the likelihood of selecting a colony of the target species depending upon the number 
of colonies of each of the target species and the similarly appearing non-target 
species. In quantitative tests, a number of colonies are selected and the proportion of 
these colonies found to be confirmed positive is used as a factor by which the 
presumptive positive count is multiplied to determine the confirmed positive count. 

 
D.3. Confirmatory Testing.  Approaches to confirmatory testing vary depending 
upon the target organism. In particular, the number of tests to be performed varies 
from target organism to target organism. Sometimes, only one test result is required 
(e.g., coagulase), whereas other times a range of confirmatory tests are required (e.g., 
BAM method for B. cereus). Each of these tests has its own characteristics (rates of 
false positive, false negative etc.). 
 
E. Organism variability 

 
Microbiological analytical tests exploit one or more microbial characteristic to 
differentiate between those microorganisms included within the group and those 
excluded.  The breadth of the designated group can be large (Gram negatives, 
Enterobacteriaceae) or small (Salmonella enterica serotype Enteritidis phage type 4, 
E. coli O157:H7).  An ideal test would detect every microorganism that is intended to 
be within the group (sensitivity) and ignore every microorganism intended to be 
excluded (selectivity).  Failure to recognize a microorganism that should be in the 
group is termed a false negative; conversely, accepting a microorganism that should 
not be in the group is a false positive.   

 
The variety of properties used to group microorganisms range from physical structure 
(rods, spore formers), to metabolic characteristics (ability to metabolize a particular 
sugar, production of hydrogen sulphide), to the ability to survive toxins (brilliant 
green agar, antibiotics), to production of antigenic proteins (ELISA tests), to the 
presence of plasmids, specific DNA sequences (PCR tests), and to the ability to 
produce a toxin (C. botulinum, Enterohemorrhagic E. coli). 
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Unfortunately for the consistent grouping of microbes, bacteria typically do not have 
a consistent set of characteristics within the group.  Nearly all enterohemorrhagic E. 
coli O157:H7, for example, cannot ferment the sugar sorbitol (unlike nearly all other 
E. coli which can ferment it) and this characteristic is used in identification tests.  
However, there is a sorbitol-fermenting serotype of E. coli that can also produce the 
shiga toxins. Furthermore, microbial characteristics are not static as DNA exchange 
occurs between bacteria at a much higher level taxonomic level than species.   
Because of these inconsistencies in the presence of microbial characteristics, there is 
a trend to identify microorganisms of public health concern by the presence of the 
DNA that codes for the particular virulence factors.  This attempts to include all 
microorganisms that can cause a particular illness, regardless of their conventional 
strain, species or even genus designations.  But even this strategy is not without 
difficulties as pathogenicity is frequently the result of a cluster of virulence factors 
and not all pathogens that cause that illness may have an identical or complete set of 
the virulence factors.  In addition, some strains may posses the DNA for the virulence 
factors but the genes are never expressed, making those strains non-pathogenic.  The 
pre-test environment, whether in a food or an enrichment medium, can sometimes 
affect the expression of an identifying characteristic. 

 
In the development of a method to detect specific organisms or groups of organisms, 
care must be taken to select a characteristic that is shared by all the organisms to be 
included and absent in those to be excluded.  Validation of a test protocol by testing 
against a wide range of microorganisms of both groups is necessary.  Quantifying the 
rate of false positives or false negatives, however, is difficult and rarely done.  In 
actuality, virtually all microbial tests are not as sensitive or selective as desired.  
Microbiologists rely on subjective knowledge and experience of the appropriateness 
of most tests for the situation at hand.  This is demonstrated by the classic “fecal 
coliform” test widely used to as an indicator of the presence of sewage contamination 
in shellfish and water.  However, this test is inappropriate (not sufficiently selective) 
for detecting sewage contamination on vegetables as there frequently are non-
pathogenic soil bacteria that would be declared positive by the test. 
 
F. Overall statistical/distribution considerations 
 
The statistical considerations for characterizing method performance can be described 
by taking an example method and considering the probability distributions that would 
be encountered at each of the steps for the method.  The example that follows goes 
through this process. 
 
Assumptions: It can be assumed that there is a probability distribution of levels, - 
cfu/ml – (or cfu/g), throughout the product being sampled.  The concepts that are 
needed for designating distributions need to be discussed at greater length. But, for 
the moment, assume that any pathogen or interfering organism is uniformly 
distributed throughout the 100 ml of the sampled material. 
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In this example, it is assumed that there is one type of organism of concern - the 
target organism - distributed uniformly with level, rt, and there is a another type of 
organism – an interfering organism - distributed uniformly with level, ri.  

 
Steps 1-2  Prepare a 1:5 dilution; spread 1 ml of material on three plates of one type 
of agar (for the moment consider just one type of agar). 
 
It is assumed that the 0.2 ml of the 100 ml sample is randomly selected so that the 
number of cells, nx, of the target or the interfering organisms is distributed as a 
Poisson distribution with parameter 0.2rx, where the subscript ‘x’ is either ‘t’ or ‘i’.   

 
Step 3   Grow colonies. 
 
The nx cells are assumed to develop into mx colonies.  If fx is the probability that a 
cell will develop into a colony, and we assume that the events of these occurrences 
among the nx cells are independent, then the distribution of the number of colonies mx 
is a binomial with parameters, nx and fx, so that the expected value of mx, conditional 
on nx is nxfx.  It turns out then that the number of colonies, mx, is distributed as a 
Poisson distribution with parameter λx =  0.2rxfx, so that, unconditionally, the 
expected value of mx is λx.  

 
Step 4  Select 5 colonies from the m = mt + mi colonies for confirmation.  If one or 
more is positive for the target organism then the sample is classified as positive for 
the target organism; otherwise it is not, and thus is classified as negative. For the 
moment, assume that any selected colony will be identified properly.   
 
The distribution of the number of selected colonies of the target organism is 
hypergeometric.  Let kt be the number of targeted selected colonies.   The probability 
of a classified positive sample is the probability that kt >0.  This can be written as: 

 
i t i

t
i t
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where here it is assumed that mi > 5.  If mi is less than 5 then there is 100% 
probability of selecting at least one colony of the targeted organism (provided, of 
course, that mt >0). 
 
If mi is large, and mt is not, then the above probability could be close to zero.  If 
both are large, but at an expected certain ratio, say, E(mt) = gE(mi) - that is, for 
every colony of the interfering kind there are expected g colonies of the targeted 
kind - then the percentage of colonies of the targeted kind is:  mt/(mt+mi) . αt = 
g/(g+1) and the hypergeometric distribution can be approximated as a binomial 
distribution with parameters 5 and αt.  The above expression - the probability of a 
classified positive sample – can then be approximated as: 

 
   P(kt>0) ≈ 1-(1+g)-5. 
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 Example (for large levels):  
 

1. If g =1, (that is, there is an expected equal number of targeted and interfering 
organisms) then the probability of a positive sample is 1 – 2-5 = 1-1/32 .0.97, or 
97%.  Or, in other words, there would be a 3% false negative rate. 

 
2. If g = 1/3 – that is, for every three interfering colonies there is one targeted 

colony, then the false negative rate would be (1.3333)-5 = 0.132 = 23.7%.    
                                 

3. If g = 0.5 – that is, for every two interfering colonies there is one targeted colony, 
then the false negative rate would be (1.5)-5 = 0.132 = 13.2%.       

                              
4. If g = 2 – that is, for every interfering colonies there are 2 targeted colonies, then 

the false negative rate would be 3-5 = 0.004 = 0.4%. 
 

5. If g = 2 but instead of 5 colonies only 3 colonies were tested for confirmation, 
then the false negative rate would be 3-3 = 3.7%.   

 
The above calculations indicate that the number of tested colonies can be 
important when there is a significant percentage of interfering colonies expected.  
Even when g = 2, the false negative rate is 0.4% when there are large numbers of 
both types of colonies, which could be considered large in some applications.   
The question that needs to be addressed is: what values of g are possible or likely?   
 
The types of uniformity or distributional assumptions made in these situations are 
paramount to the validity of the calculations.  For the above scenario, it is 
assumed that the types of cells are distributed independently and uniformly within 
the sample.  However, in reality it might be more realistic to assume an ‘extreme’ 
negative correlation of some sort between the types of cells, so that values of g are 
either close to 0 or 1.     

 
Example Calculations:   
 
a. Suppose, rt = 10 cfu/ml, and the likelihood for growth is ft = 75%, so that in a 0.2 

ml sample, there would an expected 1.5 colonies of the targeted organisms.   For 
the interfering organisms, assume that ri = 20 cfu/ml, and fi = 75% as well, so that 
there would an expected 3 colonies of the interfering organisms.  Thus, the value 
of g would be 0.5.  However, the expected number of cells in the 0.2 ml sample is 
small, so an exact calculation for determining the probability of a false negative 
would be needed.  The probability of a (false) negative result is, Pn = 24.35% - 
almost 25% of the time, the results would be negative for the target organism.  

 
b. Double rt (= 20 cfu/ml) and ri, keeping everything else the same, Pn = 13.86%, 

close to the theoretical asymptotic result of 13.2% given above in 2). 
c. rt = 10 cfu/ml and ri = 5 cfu/ml (so that g = 2)  Pn = 22.32%. 
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d. rt =  20 cfu/ml and ri = 10 cfu/ml, then Pn = 5.1%. 

 
e. rt =  30 cfu/ml and ri = 15 cfu/ml, then Pn = 1.35%. 

 
f. rt =  40 cfu/ml and ri = 20 cfu/ml, then Pn = 0.6%. 

 
g. rt =  60 cfu/ml and ri = 30 cfu/ml, then Pn = 0.4% (close to the asymptotic result). 

 
h. rt =  100 cfu/ml and ri = 50 cfu/ml, then Pn = 0.4% (just for emphasis). 

 
i. rt =  100 cfu/ml and ri = 200 cfu/ml, then Pn = 13.2%. 

 
Figure 1 presents the operating characteristic (OC) curves for the probability of a 
negative finding, Pn, versus the assumed level of the target organism, rt, assuming 
different levels of the interfering organism, ri; where rt = gri .  It is assumed same growth 
likelihood and recovery of 75% for both types of organisms, and 5 colonies are tested for 
confirmation.  
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Figure 1: The OC curves for the probability of a negative finding at different levels of 
target and interfering organisms.  For every colony of the interfering kind there are 
expected g colonies of the targeted, so that g = 1 means that there are expected the 
same number of interfering and targeted colonies; g = 2/3 means that for every 3 
interfering colonies, there are an expected 2 targeted colonies  
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Summary and conclusion 
 
This review is a bottom-up approach that attempts to identify and quantify all potential 
errors of a laboratory method.  From a mathematical characterization of the results 
associated with each source of variation, a derivation of the expected operating 
characteristics of a method can be made.  However, there are other unidentified sources 
of variation that are not likely to be captured when studying the method through a 
bottom-up approach that are associated with human errors, for example pertaining to 
equipment settings and calibrations,  as well as unexpected changes in environmental 
conditions that cannot be captured in small, controlled, laboratory studies.  The 
importance of these might be determined through ruggedness tests, where the parameter 
specifications for critical steps of the method are changed slightly from their nominal 
values in order to determine the effect of small changes. Ideally methods that are used are 
rugged in that the results are not affected greatly by small changes of the method’s 
specifications. To the degree that a test is rugged, the bottom –up approach for 
determining the magnitude of variation (of results) will capture a large portion of the total 
variation.  Thus we have recommended ruggedness testing to be part of method 
validation (BPMM Task Force Report Executive Summary).   
 
While inter-laboratory studies may be needed to develop reproducibility measures that 
basically validate methods to be used by qualified analyst , it is still critically important to 
identify the sources of variability in a method and quantify their effects within laboratory.  
These can be used for quality control monitoring.  In addition, if  definitive inter-
laboratory studies providing reliable measures of method performance do not exist, then 
performance measures determined from a series of a bottom-up studies, identifying and 
quantifying variability associated with the critical steps of a process should be conducted 
that can be used for laboratory QA.  It is possible that the performance operating 
characteristics estimated will be accurate when using a bottom-up approach particularly 
so if it can be shown that the method is rugged.    
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Enclosure B - Statistical Process Control for process control of 
microbiological levels 
 
Executive Summary 
 

As mentioned in Appendix D, the purpose of sampling and thus measuring 
something is to make some type of inference or evaluation of some population property.  
In Appendix D a short discussion of the effects of sample and measurement errors on 
evaluation was given. This appendix discusses in more detail one general sampling 
application: Statistical Process control (SPC), which is a type of quality control (QC) 
sampling used to control a process.  Statistical Process Control (SPC) has been used in 
the manufacturing setting for many years for controlling the quality of produced items.  
Recently its applications have been extended to microbiological output for use, 
successfully we believe, in ensuring the safety of processed foods or other items that 
might present a hazard to consumers of the product.  In addition SPC can be used by 
laboratories in helping ensure that the measurement process is “in control” – that is, that 
the measurement deviations from the true value, over time can be considered as being 
independent of time and within specifications that might have been determined from 
collaborative or inter-laboratory studies.  This can be accomplished using split samples or 
check samples, and occasionally comparison with another more authoritative method. 

 
 There are two features that characterize SPC and differentiate it from other types 
of sampling, namely acceptance and survey sampling.  These types of sampling involve 
taking samples from a well defined population of units, specifying an upper bound to the 
number of samples that would be taken, and, from the results obtained from these 
samples, making a decision or an evaluation abut the population that was sampled.   As 
opposed to these types of sampling, SPC sampling does not involve specifying a fixed 
upper bound number of samples or necessarily identifying clearly a population of units.  
Rather, SPC involves sequential sampling over time, accompanied by a set of rules or 
criteria that are used to make decisions or evaluate, not so much a well defined set of 
units, but rather the process that is creating the units. The second feature that 
characterizes SPC is that the underlying values of parameters that are used to construct 
the rules are derived from results from sample units that were created by the process 
itself.   In order for this to be done in meaningful way, the parameter values should be 
reflecting the process when it is in control. Thus, SPC as a subject matter, involves 
methodology for judging this – when can it be considered that a process is in control so 
that the rules that are to used for evaluating whether or not the process is or remains in 
control are valid.  SPC involves evaluation of the process and not specifically whether 
produced units or obtained measurements are within some pre-defined specifications.    
 
 Laboratories can use QC procedures for assuring that the measured results being 
produced are within specifications that are defined by repeatability or reproducibility 
parameters.  SPC though offers a degree of flexibility that takes into account the actual 
system or process of measurement, insofar as the criteria for evaluation are not derived 
from outside the process but are derived from within the process itself. The full 
application of SPC entails a continuous examination of the data with the purpose of not 
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only just judging whether or not a process is not producing as it should, but also that the 
process has the capability of producing better than it was initially thought it should, by 
helping identify areas of potential improvement. That is, evaluative criteria can change, 
taking into account the potential capability of the process.  
 

Thus, this document has a twofold purpose.  The first purpose, the primary one and 
the reason for the document, is to present “performance standards” regarding the 
application of SPC for microbiological output of a process.  However, a second purpose 
is to provide a simple introductory paper that could serve as a beginning point for 
learning about SPC and its application for microbiological data.  Thus examples in 
Appendix G1 are given that demonstrate principles that are rooted in the performance 
standards. 

 
The sampling work group is recommending the following “performance standards” 

with respect to implementing SPC for microbiological data.  The performance standards 
are not meant to prescribe procedures or criteria that should be used for evaluating 
processes; rather they are meant to provide guidance and a methodology to be used for 
developing a SPC sampling plan.   Following the performance standards are discussions 
of them, a conclusion section, and specific examples (seven in all) given as Appendices 
of the report (BPMM report Appendix F.1).  The examples include SPC for qualitative or 
attribute data, including binomial Poisson –like, and negative binomial distributions; 
continuous variable data of high levels of generic E. coli; and an example which uses 
SPC for tracking the occurrence of infrequent events such as the finding of E. coli 
O157:H7 on samples.  Hopefully these examples will serve as useful material. 
 
Performance standards: 
 

1. Charts of plots of the output data over time are not only valuable for verifying 
calculations and having a visual picture of the variation exhibited by the process 
output, but also it is an integral tool to be used for identifying sources of 
unexpected variation in output leading to their elimination. Thus charting is a 
necessary tool needed to gain the full benefit of doing SPC.  

 
2. Results to be plotted in a control chart, when the process is under control, used 

for statistical process control should be normal or nearly normally  distributed.  In 
cases where this is not true and an alternative known distribution  cannot be 
assumed such as a Poisson, binomial, or negative binomial  distributionsi, 
transformations such as the log transformation for microbiological  counts, arcsine 
transformations for binomial data, or a square root transformation  for data 
distributed nearly as a Poisson distribution should be considered. 

 
3. During some “initial” period of time, it is assumed that the process is operating in 

a relatively stable manner – or is in control.  During this period the  distribution of 
the measurements should be estimated and rules for evaluating the  process should 
be formulated. The statistical “rule of thumb” of using about 20-30 results or 
more for computing means and standard deviations or other summary statistics 
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needed to estimate the distribution of results and construct control limits is a 
recommended and desirable goal.  

 
4. Rules for evaluating process control should be set with aids assessing the two 

types of errors: Type 1, declaring the process out of control when it is not, and 
Type 2, not declaring a process out of control when it is.  Typically there are two 
measures, depending upon the nature of the rule, that are used for assessing these 
errors: 1) the probabilities of the two types of errors at a given time (referred to as 
α- and β- probabilities, respectively); and 2) the average run length (ARL) – the 
expected number of samples before an out of control signal (one of the rules being 
not met) is seen. 

 
5. When a process is thought to be “in control,” the limits for assessing individual 

results are set at some distance from the average, expressed as standard deviation 
units from the mean or process target value.  The default distance is 3 standard 
deviationsii.  Limits other than these should be implemented when taking into 
consideration economic and public health costs of incorrect decisions regarding 
whether the process is in control.  When developing rules, the α-probability (for 
the Type 1 error) should be kept low, for example, below 1%.   

 
6. There are numerous run/trend rules that can be used, such as runs test, moving 

averages and CUSUMS, for detecting shifts in the process mean; and rules for 
detecting shifts in the process variation or other auto-correlated patterns that could 
be due to systematic source of variation.  The use of any of these may depend 
upon particular expected conditions that arise when the process is out of control, 
and the sensitivity desired for detecting such conditions. In assessing the use of 
these rules, one should consider the ARL.  It is recommended, when the process is 
in control, that an ARL should exceed 100 (corresponding to a less than a 1% α - 
error). 

 
7. Specification Limits are not Statistical Process Control limits; specifications are 

either customer, engineering, or regulatory related.  Statistical Process Control 
limits are process related.  Specification limits should not be placed on a control 
chart insofar as these might be considered as process goals thus influencing the 
efficacy of SPC procedures for ensuring a controlled process, and thereby 
undermining the safety of the product.  
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Performance standard 1 – the necessity of charting 
 

Statistical process control (SPC) involves two aspects: use output data from a 
process to establish an expected distribution of values of some variable which is used for 
judging the control-status of a process when the process is (thought to be) in control; and 
a set of rules or criteria for which (future) output values from the process must satisfy in 
order not to declare, or declare presumptively, the process is out of control.  In 
establishing the distribution to be used for determining the control status of the process, 
besides the output data, various other, regulative, type judgments are used that can affect 
the assumed distribution and the rules that are used for evaluating the process.   

 
One feature that is included in the SPC methodology is charting – plotting of 

output process data values that are used for evaluating the process versus time or sample 
number, and examining the charted or plotted data.  A question might arise is: why is this 
charting necessary?  The implication of the question is that it may not be necessary, 
particular so with today’s computer technology – all that is needed is to somehow feed 
the data into a computer program and the program would make the calculations, 
determine whether or not the rules were violated and thus provide the control-status of 
the process.  Various answers to this question can be given.  One answer could be that 
charting provides a confirmation of the calculations; however, with today’s computer 
technology there are many other ways of ensuring that the calculations are correct to the 
extent that if there was a noted discrepancy between the plotted data and the computed 
results it more likely would be due to an error in plotting rather than in calculations.  
Thus, the answer to the question involving “looking” at a chart for the purposes of 
confirmation does not provide a good reason for the necessity of charting.  Another 
answer might be based on psychology – the chart provides management with a visual 
picture of what is happening and this would give them a greater understanding of the 
process than what could be gained by examining sets of numbers and adherence of them 
to a set of rules.  This answer by itself though would not provide a necessary reason for 
charting, at least not one in which a requirement of charting is recommended since there 
really would not appear to be a concrete gain from plotting.    

 
However, this last answer is getting closer to the reason that compelled us to 

recommend, necessarily, charting, rather than just pointing out that charting is useful for 
the above stated reasons.  The “seeing” of the chart can convey an understanding of the 
process that adherence to a set of rules cannot. Thus while the “looking” at charts can 
provide the confirmatory and psychological assurance, the “seeing” – meaning, a more in 
depth examination of the charted data - can provide additional information about certain 
aspects of the process that might have been unanticipated initially so that prior “rules” 
reflecting these aspects were not constructed.  From “seeing” a chart, new insights might 
be gained that could show the inadequacy of the selected rules or could provide 
motivation for the development of new rules that lead to identifying unanticipated 
sources of error and an improvement of the process; on the other hand, however, it could 
lead to explorations that do not lead to improvements and thus could lead to an inefficient 
use of time and resources.  Thus, to help prevent incorrect decisions statistical analysis 
(retrospectively) of data should be performed (See Appendix 2).   The “look and see” 
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approach to charting is emphasized in SPC, notwithstanding possible pitfalls associated 
with this.  

 
Performance standard 2 – The control distribution 
 
 Statistical Process Control, (SPC) has been used successfully to control quality 
and costs of manufactured products since the late 1920’s. This statistical tracking system 
used for monitoring processes performance was developed by Dr. Walter Shewhartiii.  He 
discovered that variation observed in manufacturing output was visually “different” from 
the variation that he would expect to see for similar type characteristics in nature for a 
stable system. Dr. Shewhart speculated that the variation that was not expected was due 
to processing errors by either labor or management.  In other words, if the process was 
“under control,” the deviations from a mean value of statistical measurements that 
“track” some feature or output of the process would be distributed in a “random” looking 
fashion without any clear patterns, “unimodally” or at least displaying some degree of 
“regularity” or “stability” with very few outlier values.  Further, it was assumed that the 
errors would be symmetrically, or nearly symmetrically, distributed around the mean 
value.  In other words, normality, or near normality, is a natural distribution to assume 
when a process is under control since it is then assumed that the deviations are “caused” 
by many, inherently uncontrolled factors, each contributing only a small amount to the 
magnitude of the deviation.  Historically then, in the manufacturing setting, rules or 
control limits for assessing a process to be out of control were set symmetrically with 
respect to the mean value – the assumption being that a result could be equally likely 
above as below the mean value.  Thus, ,the distribution of the plotted values for the 
control chart was assumed to be normal and the operating characteristics of the rules - the 
probability of declaring the process out of control as a function of the true process mean - 
were evaluated assuming the underlying distribution of results is the normal distribution. 
 

For microbiological data the above assumptions may not be true – rather, often 
(explicit examples are given in Appendix F.1) distributions seen will not be symmetric. If 
the non-symmetric distribution is known, then it is possible to use this distribution 
directly with the accompanying mathematical calculations to derive control limits with 
certain desirable operating characteristics.  In such a situation parameters of these 
distributions can be estimated by maximum likelihood estimation or other statistical 
procedures and control plans can be determined directly using estimated distribution.  
However, often these specialized assumptions cannot be made, since with processing and 
measurement there would be expected unavoidable differences over time that could be 
caused by factors related to slight variations of equipment settings, environmental 
conditions and personnel that cannot easily be controlled or completely eliminated.  For 
example, it might be assumed that under ideal conditions, the plate count distribution 
would be Poisson, with a parameter, 8 - representing, in this case, the expected value.  
But value of this parameter may not be constant from day to day, or sample to sample, 
rather, 8 itself would be a random variable, taking on possibly different values for 
different samples.  Because of this (8 being a random variable), the total variation seen in 
the obtained results would not be expected to be equal to the expected variation of results 
seen from a Poisson distribution. The distribution of the results thus might be represented 
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well as a mixture of Poisson distributions.  One such distribution is the negative binomial 
distribution, which has two parameters.    

 
In general though, the expected distribution when the process is in control may 

not be known other than it most likely would not be symmetric. And for the classical SPC 
control procedures (as described below for Performance Standard 3), the limits are set 
using sample mean and standard deviation values for results on sample collected from a 
process assumed to be in control or nearly so, as if the distribution of these results were 
generated from a nearly normal distribution.  If the distribution of results is not nearly 
symmetric, then transformations of the output variable, for example, taking the logarithm 
of microbial plate counts, may induce a more symmetric looking distribution.  There is 
often another advantage of using the transformed variable: namely, the expected standard 
deviation would be less dependent on the expected mean value of the particular result.  
Thus, if plate counts were thought to be distributed as nearly lognormal, then a log 
transformation would make the distribution nearly normal and the variances of each 
transformed result would be nearly uniform for the data.  Similarly if the data results 
were thought to Poisson-like distributed, a square root transformation of the results would 
make the results more symmetrical and make the variance more uniform (Appendix 3); 
for the binomial distribution, the arcsine transformation, sin-1[(x/N)1/2];  and for the 
negative binomial, the inverse hyperbolic sine transformation, N1/2sinh-1[(x/N)1/2] would 
make the distribution more symmetric and the variance more uniform (Johnson and Kotz, 
1969).   

 
 While a normal distribution of the deviations from the mean value is not an 

absolute necessity for applying the control techniques discussed in this paper, historically 
the stated probabilities describing the operating characteristics of the control plan are 
computed assuming normal distributions and used for motivating decision rules.  As a 
result of these considerations, performance standard 2 is recommended.  

.  
 

Performance standards 3 and 4 – Establishing the control distribution and rules for 
process evaluation 
 
 SPC is applied as follows:  
 

1) During some “initial” period of time, it is presumed that the process is operating 
in a relatively stable manner, as described in the preceding paragraphs. This is a 
very important presumption and in actuality to reach this point when the process 
controls and parameter values are set, it may be needed an extended period of 
experimentation or trials.  Whenever possible, independent validation of the 
presumption of process control should be made by other means, different from the 
statistical process control planning to be used, such as, for laboratory QC, the use 
of reference standards or cultures with known characteristics.  If the distribution 
of results is expected to be nearly normal, then during this period statistical 
measurements should be distributed randomly around a mean value, μ with a 
standard deviation, σ.  Values for these parameters are estimated during this time.  
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2) Over time, the statistical measurements are plotted on a graph, called a Shewhart 
chart (see Appendices for examples), showing the distribution of the statistical 
measurements.  The Shewhart chart is basically the plot of the measured values 
versus sample number, starting with some sample labeled 1.  

 
3) If the plotted statistical measurements do not meet any one of a set of criteria the 

process is considered to be “out of control.”   
 

The criteria are chosen to reflect different manifestations of “out of control” of 
interest to the producer.   Particular types of “out of control” signals are: a) “short term” 
non-systematic errors that might occur that result in an unacceptable product for a given 
day or lot; b) persistent errors that cause a systematic deviation from the pre-designated 
target value, μ; and c) persistent errors that cause an increase in variability (σ) of process 
output.  

 
Decision errors in regard to deciding whether or not a process was under control 

are similar to decision errors guarded against by the use of statistical procedures when 
testing two competing hypotheses in science.  That is, a Type 1 error is made by deciding 
that the process is out of control when, in fact the process is in control and thus would not 
require adjusting; and a Type 2 error occurs when a process is not adjusted (actually is 
out of control) but it is decided that it is not out of control and the process is left as is.  
The probabilities of these errors are, respectively, referred to as α - and β- probabilities. 
Both of these errors could contribute to processing inefficiencies.    

 
Processes can be affected by Type 1 and 2 errors because management and hourly 

workers often make adjustments that should not be made or fail to make adjustments that 
should be made in the attempt to “improve” the process output.  The psychological forces 
that lead to changes or no-changes and thus errors influence the output of a process.  A 
belief could develop, particularly the more one gains experience with the process, that ad-
hoc adjustments based on one’s expert judgment would lead to a better process and 
output than just relying on pre-set rules as implied by charting and SPC. While in certain 
circumstances this may be true, often times it would not be so, and such a belief (of the 
advantages of following expert judgment) is not a reason to resist placing control charts 
on a process and using SPC.  If nothing else, the use of control charts and SPC helps 
establish objective criteria for making adjustments (once the limits are established).   

 
In other words, SPC and the use of rules for evaluating the process, determining α 

- or β-probabilities of the rules are not meant to eliminate expert judgment; rather these 
activities should be viewed as an aid for making judgments helping to prevent 
unwarranted actions that lead to a Type 1 or Type 2 error.  “Out of control” signals can 
be considered “presumptive” regarding whether the process is out of control; and the 
examination of the data once plotted can lead to judgments of “an out of control process” 
that the charting “rules” have not reflected.  Thus performance standards 3 and 4 we 
consider to be necessary for preventing the dominance of expert judgment in the 
evaluation of a process, but is not meant to eliminate it. 
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Consequently, SPC in its fullest sense involves preliminary analyses or testing of 
the process to a point where process parameters have been determined, such that it is 
believed that when the process is operating in accordance with the parameter 
specifications, the distribution of the measured output that is being used for evaluating 
process control would have the characteristics described above (random, stable, nearly 
symmetric or with some other designated distribution).  In the developmental stage of the 
process this assumption may not be true.  The SPC and plotting techniques described here 
can also be used in the developmental stages; however, in this situation the criteria for out 
of control may need to be changed.   

 
 Performance standard 5 – Control limits for individual values 
 

Dr. Shewhart understood that in order for a control system to work effectively the 
rules or criteria used for determining the control-status of a process should meet a couple 
of requirements. These requirements include:  

 
1. The α-probabilities (of incorrectly saying a process was out of control when it 

was not) must be low enough so to not unnecessarily create delays in processing 
(which could be costly) and fatigue workers and management from looking for 
causes of variation that do not exist; 

 
2. The criteria must be robust enough so that a number of probability distributions 

can be accommodated by the procedures; and  
 

3. The criteria should be simple and easily “seen” on a graphiv. 
 

As a consequence of the above considerations, Dr. Shewhart settled on his most 
well-known criterion that placed, what he termed, “Control Limits” a distance of three 
standard deviations from the process average; that is, control limits were set such that if a 
single measured value, (labeled often as Xi), was either greater than μ + 3σ or less than μ 
- 3σ, with μ being the process average or intended process target then the process was to 
be presumed out of control.  When the underlying distribution is normal, then the 
probability of exceeding one of the limits is 0.135%, so that the two-sided α-error is 
0.27%.  For most distributions expected for processes under control, the likelihood of 
seeing measured observations that do not satisfy these criteria is smallv thus satisfying 
requirements 1 and 2 above.  Also, the third requirement is clearly met because the limits 
are just horizontal lines on the chart, and it can be easily seen if a plotted point is not 
between the two lines, indicating “out of control.”  This criterion would “catch” a 
processing error that might not be systematic, and, when not met, would imply that there 
is some aspect of processing that might not be controlled.  

 
 
 
 
 
 

AOAC Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 



Appendix F - SAWG Enclosure B - Statistical Process Control 8-8-06 
Page 9 of 14 

 

Performance standard 6 
 
 Tracking trends or shifts in the process mean value 
 

There are many ways to evaluate “systematic” errors that would cause the mean 
value of the process to change. One very simple way, which can be easily seen on a 
Shewhart chart, is to use “run” tests, for example, to declare a process “out of control” 
when 8 consecutive points fall on the same side of the target value (e.g. process mean)  - 
a run of length 8.  When the process mean value equals μ, such a pattern is highly 
unlikely, (assuming here a symmetrical distribution of measured values) so that when 
such a pattern is seen it is likely that the process mean is not equal to μ.  A run of 8 
consecutive results above or below the targeted mean value has, for those 8 results, a 2 in 
256 chance of occurring (accounting for the two possibilities of 8 results above the mean 
or 8 results below the mean) or about a 0.8% probability, (2(0.58)  = 0.0078).   However, 
with such tests, it takes one result to break the pattern.  A criterion might be set as: if at 
least 7 of 8 consecutive results are above or below the mean value, then the process 
would be considered as out of control (or presumptively out of control, pending further 
investigation).  The probability of at least 7 out of 8 observations above or below the 
mean value has a probability of 7% (from the Binomial probability distribution with an 
incidence parameter with a value of 0.5). That is to say, it would be expected that 7% of 
any 8 consecutive sample results to have at least 7 of the results above or below the mean 
value when there is for each result a 50% chance of being above or below the mean 
value. Thus if a criterion of at least 7 of 8 results are above or below the mean value the 
process would be presumed out of control, the α-probability would be about 7%. For a 
one-sided test that is, for example, a test for which the concern is only with a process 
change that results in an increase of the process mean value, the α-probability would be 
3.5%. This percentage is usually considered too high, given the costs associated with 
investigating a presumptive out of control signal. 

 
Because just one result can “break” the pattern, runs tests are not very “powerful” 

for detecting small or even moderate shifts (relative to the standard deviation) – that is 
the β-error may be large. For example, if the mean increased by one standard deviation 
unit, so that the true process mean changed to: µ + σ, then the probability of an individual 
result being below the target value, µ, is 16%, (84% of the values will be above the 
target).  For 8 consecutive results, the probability of having at least one result below the 
target value of µ is about 75%, so that the β error associated with this criterion would be 
0.75, (for a single run of 8 values).  The criterion for the upper control limit would not 
help much: there is an 83% probability that all 8 results would be below the upper control 
limit of µ + 3σ. 

 
For this reason, moving averages and CUSUMs are often used for monitoring 

processes, where a moving average is the average of the results in a group of consecutive 
samples and a CUSUM is a procedure that accumulates iteratively deviations from the 
target value.  Moving averages are more difficult to compute because the samples used 
for computing averages are always changing and thus at any time the results over a 
(changing) set of samples need to be known.  Also there is an issue of how many samples 
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to use in computing the moving average (the window length of the moving average).  The 
CUSUM (Johnson and Leonevi, 1964; Juran 1988vii) control procedure avoids these 
problems and is thus simpler to compute and to design. The CUSUM value is basically 
updated at each sample by adding the deviation: Xi - μ, to the previous value, where μ is 
the target value, for example, the (expected) process meanviii.  When CUSUM values are 
plotted versus sample number, evidence for a shiftix in the process mean value is easily 
seen when the graph of the points steadily increases or decreases.  For a simple charting 
of CUSUMx where a control limit can be depicted such that a process out of control 
signal would be given when the CUSUM value exceeded the limit, L, a slight 
modification of the CUSUM as described above can be made, namely: computing, Si = 
max(0, Si-1 + Xi -µ), where Si is the CUSUM value for the ith sample, and S0 = 0 (or some 
other value for a’ quick start’).  When Si  > L, this would imply that there was a positive 
shift in the process mean some time in the recent past.  (An example of the calculations is 
given in Appendix 2.)  A similar type CUSUM can be constructed for negative shifts of 
the process mean.  Developing limits for these is more complicated and is out of the 
scope of this document, however, it is encouraged that these procedures be considered 
when designing control charts. 

 
To measure the effectiveness of sampling plans and sampling criteria (or rules), 

another parameter, called the average run length (ARL) is used.  The run length, RL, is a 
random variable that counts the number of samples (starting at some specific sample) 
before the first signal for “process out of control” is given; in other words, the number of 
samples until at least one of the sampling plan’s criteria or rules for declaring the process 
out of control is obtained.  By convention, the sample for which there is a signal is 
counted, thus all run lengths are greater than or equal to 1.  Control plans and their 
criteria are often evaluated by characterizing the distribution of the run lengths, and in 
particular by the expected number of samples – the average run length (ARL) - before the 
first “out of process” signal given, starting from some specific sample.  When a process is 
in control, the desire is that the ARL should be large; and of course, when the process is 
out of control the desire is to have a small ARL.  ARL has become a traditional parameter 
to consider, but other parameters of the run length distribution could be considered as 
well, for example, selected percentiles of the RL distribution.  

 
A simple example, presented below, shows comparisons between a CUSUM rule 

and the “eight in a row” rule described above.  In the example, a CUSUM rule is given 
that has a comparable ARL when the process is in control to that of the “eight in a row” 
rule discussed above.  The following table gives the average and median run lengths.  
The values given in the table were determined from 20,000 simulationsxi.  The 
assumption for the underlying distribution is normal, with mean equal to μ and standard 
deviation = 1. Control is when the mean, μ = 0. 
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Table 1: Results: each entry determined from 20,000 simulations. 
CSUSM calculations:  Sk = max(0,Sk-1 + x), where x is distributed normal with 
mean = μ and standard deviation = 1, and S0 = 0.  The process in control mean = 
0; when μ > 0 the process is out of control.  Out of control signal when Sk > 21.5.  
The parameter “mu” is the number of standard deviation the process has drifted 
from the target (μ).   

 
                                CUSUM     CUSUM    8 in row    8 in row 
                                 mean    median      mean       median 
                         mu       ARL      ARL       ARL          ARL 
                        0.0     510.7      392       506.9        351 
                        0.1     177.1      152       299.9        210 
                        0.2     100.8       91       183.0        129 
                        0.3      69.6       65       121.2         86 
                        0.4      53.8       51        82.6         59 
                        0.5      43.2       41        58.9         43 
                        0.6      36.5       35        43.7         32 
                        0.7      31.4       30        33.7         25 
                        0.8      27.5       27        26.8         20 
                        0.9      24.7       24        22.2         17 
                        1.0      22.2       22        18.9         15 
                        1.1      20.3       20        16.4         13 
                        1.2      18.6       18        14.4         11 
                        1.3      17.2       17        13.0         10 
                        1.4      16.0       16        11.9          8 

                  1.5      15.0       15        11.1          8 
 

The chart shows that for a value of µ less than 0.7 standard deviation units but greater 
than zero, the CUSUM has smaller ARL than that for the “8 in a row rule.”  For shifts in 
the mean value of ¼ standard deviation units, the ARL for the CUSUM is nearly ½ that 
for the “8 in a row” rule. 
 
 For the above control plans, when the process is in control, the ARL is about 500 
corresponding, in a sense, to an α - probability of 0.2% (since for a rule on individual 
results with this probability of a signal, the expected value of the number of samples 
before the first signal using a geometric distribution would be about 500). The median 
value for this geometric distribution is about 345, corresponding reasonably close to the 
median run lengths shown above for when the process is in control.  
 
 There is a great deal of literature on designing moving averages and CUSUMs, 
and much useful information about these can be found in the above mentioned books or 
even on the internet (from a reputable organization such as the US National Institute of 
Standards and Technology).  
 
Tracking process variability 
 

The process standard deviation, σ, also can be tracked in many ways.  A very 
simple criterion based on the absolute value of the differences of consecutive measured 
values, MR – for moving range, can be used to track the process standard deviation. This 
is not a very robust measure; better might be to group more results, and compute the 
moving standard deviations or  moving ranges for the results in a group, however, these 
statistics are not as easily computed and plotted and may have little meaning for 
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processes where data are relatively rare such as microbiological data.  The MR on the 
other hand involves only having knowledge of the most recent and second most recent 
results.  Another option when possible is to subgroup data into discrete subgroups and to 
calculate the range, (high minus low observation within a subgroup).  However, for data 
that are expensive to obtain, hard to gather and or relatively rare, charting of MR values 
and using them to get a visual understanding of the process has become popular.  

 
Performance standard 7 – Specification limits 
 

Other, non-process control related values, such as, specification limits should not 
be placed on control charts. The reason for this is psychology. Specifications are 
something that all individuals who deal with a customer are accustomed to meeting. 
These specifications may be engineering specifications, customer requirements or 
regulatory critical limits, to name just a few examples. Since people are accustomed to 
meeting these values, and, as a consequence, specifications are given a higher priority 
than control limits. From a process control stand point this is not the ideal situation, 
insofar as the goal of process control is to achieve the best control possible for given 
resource constraints. Reducing variation is a particularly important goal when 
microbiological quantities that could represent a hazard to human health are the object of 
the control procedure.  For example, if specification limits are “looser” than the 
obtainable SPC limits for a particular process and one were to make adjustments based on 
the specification limits rather than the control limits then adjustments would be made less 
often than the SPC limits would require, thus creating type 2 errors.  This lack of control 
of a process could mask undiscovered sources of error, which if persistent could result in 
a product that is unsatisfactory or unsafe.  In other words, a process which is not 
controlled and thus for which there may be unidentified sources of variation, by the mere 
fact of there being unidentified sources of variation not being controlled may, without the 
producer being aware of it, result in unsafe product. Sampling, per se, cannot be counted 
on for assuring to customers a product is within specifications when the process is not in 
control – rather only good process control can assure that.  For these reasons it is advised 
that only process control related values be placed on the control chart. 

 
Conclusion 
 

The SPC chart can be an important aid in identifying when and where an 
investigation for a cause for the process being out of control should commence.   The low 
α-probability does not imply that, when a process is in control, “out of control” signals 
would not occur. However, since these occurrences are not expected frequently, the 
occurrence of one encourages an examination of the process in search for “Assignable 
Causes” for each out of control signal. However, if out of control signals occur more 
frequently than what would be implied by the α-probability, random chance –the unlucky 
draw- should be ruled out as a possible reason for the signals, and that there is an 
“assignable cause” for the excessive variation in the process output and/or one or more of 
the process parameters are incorrectly set.  This would then call for a more rigorous 
review or further study of the process.  If the plot of the data shows an abrupt change 
from consistently being in control to consistently being out of control, then it can be 
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concluded with high confidence that there has been an enduring failure somewhere in the 
process that requires immediate remediation.  The plotting of the process may reveal a 
gradual, progress loss of control over a series of lots or production units. This pattern 
could result, for example, from a piece of equipment steadily becoming out of adjustment 
or a progressive environmental contamination resulting from an inadequate sanitation 
program.  Another pattern could show a transitory but reoccurring or cyclical loss of 
control, e.g., every Monday morning.  While no explicit criteria are given for detecting 
these types of cyclical patterns, one could use the “run rules” of 8 in a row (discussed 
above), e.g., if for 8 Mondays, the plotted point is above the target value, it would be 
suggested that for some reason results for Monday are “out of control.”  The SPC plots 
can also document improvement in process control resulting from deliberate alterations 
or added mitigations.  The lower levels due to the process alterations are used to establish 
new process standards.    

 
 When the limits for declaring a process out of control are exceeded too frequently, 
a producer always has the option to accept the implied non-desirable or optimal 
processing.  Whether this option is taken depends upon ‘costs’ (technical feasibility, 
monetary) of fixing the problem, e.g., taking measures that would reduce either the 
process mean or the process variation.  For example, the likelihood of a process being 
declared out of control with respect to some microbiological indicator variable could be 
reduced by increasing the heat processing temperature.  However, this mitigation requires 
more energy consumption and may reduce sensory and nutritional quality of the food 
product.  Reducing the variation might be accomplished by simply improving the air 
circulation within the oven or the one-time expense of a new oven.  This mitigation 
would likely have an additional benefit of reducing the proportion of product that was 
over cooked, thereby improving the sensory and nutritional quality.  This example shows 
a general rule: it is generally more advantageous to reduce variation first.  If that is not 
successful, then a process step(s) may need to be redesigned to lower the entire 
distribution by lowering the process mean.   
 

In the past almost eighty years the genius of Dr. Shewhart’s methods have proven 
themselves, and are as effective today as four score earlier.  Although Dr. Shewhart used 
some biological examples in his book, “Economic Control of Quality of Manufactured 
Product, (D. Van Nostrand Company, Inc., New York, 1931),” he did not make reference 
to their use with regards to microbiological data.  Another classic book for Quality 
Control that provides various statistical process control procedures is Juran, JM, 1974 
Quality Control Handbook, third edition. McGraw-Hill Book Co. NY. 

 
The brief summary presented in this document will not adequately cover the 

subject matter of SPC and quality control charting procedures.  To aid the reader in 
gaining an understanding of SPC, this document includes seven examples – presented as 
Appendices – that cover some microbiological uses of standard SPC Charts and 
variations of the standard Shewhart chart which uses Shewhart’s α-level for setting 
control limits and other out of control rules.  The examples are based on computer 
generated simulated data, or, in one case, constructed data; the primary purpose of these 
examples is just to illustrate procedures and approaches for analyzing the data and 
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implementing SPC.  From these examples, it is hoped the reader will get an idea of the 
uses of control charts and will be motivated to pursue the subject matter further.   

 
There are 7 examples, all found in Appendix F.1 – SAWG SPC Appendices: 
 
Appendix 1:  Classical SPC – generic E. coli levels, treated as a variable 

 (continuous) data. 

Appendix 2:  Counts, using a Poisson distribution (C- chart). 

Appendix 3:  Counts, not using a Poisson distribution, but rather comparing a 
 negative binomial distribution and a square root transformation. 

Appendix 4:  Proportions, using a binomial distribution (NP- chart).  

Appendix 5:  Proportions, using a binomial distribution with different numbers of 
 units per sample (P- chart). 

Appendix 6:  Counts, using a Poisson distribution, with different sample sizes (U- 
 chart). 

Appendix 7:  Infrequent events, based on exponential distribution (F- chart). 

 
 
                                                           
i If such distributions are assumed then goodness-of -fit statistics should be given for verification. 
ii Low values for microbiological measures would not be considered as undesirable or that, necessarily, the 
process is out of control.  Rather consistent low values could be considered as evidence of that an 
improvement in the process could be made.   
iii Walter A. Shewhart, “Economic Control of  Quality of Manufactured Product, 1931” 
iv  We have not seen this requirement attributed to Dr. Shewhart, but it is certainly implied by his emphasis 
on charting and plotting data points.  
v For all unimodal distributions, likely to be seen, using these criteria, the two-sided α -probability is 
reported to be below 5% (Vysochanskii and Petunin, 1980v). Since, primarily with microbiological data, 
the concern is with an out of control process leading to high values, this would imply that the one-sided "α 
- probability would be even smaller.  
vi Johnson, Norman L. and Leone, Fred C. (1964).  Statistics and Experimental Design, Vol. 1. John Wiley 
& Sons, New York. 
vii Juran, J.M. (1988) Juran’s Quality Control Handbook. 4th ed. McGraw-Hill, New York. 
viii Actually, more generally, X - μ - k is used where k is a constant that can be chosen to provide operating 
characteristic desired by the designer.  
ix It is assumed the process was initially in control with a process mean equal to µ.  If the CUSM signaled 
after a few samples, then this assumption would be questioned.  
x See for example: http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm. 
xi The simulations were run on Statistical Analysis Systems (SAS – release 8.0) using their normal 
generator: normal(0).  
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Appendix 1: Control Charts for Variables Data – classical Shewhart control chart: 
 
 When plate counts provide estimates of large levels of organisms, the estimated 
levels (cfu/ml or cfu/g) can be considered as variables data and the classical control chart 
procedures can be used.  Here it is assumed that the probability of a non-detect is virtually 
zero.  For these types of microbiological data, a log base 10 transformation is used to 
remove the correlation between means and variances that have been observed often for 
these types of data and to make the distribution of the output variable used for tracking the 
process more symmetric than the measured count data1.    
 

There are several control charts that may be used to control variables type data. 
Some of these charts are: the Xi and MR, (Individual and moving range) X and R, 
(Average and Range), CUSUM, (Cumulative Sum) and X and s, (Average and Standard 
Deviation). 

 
This example includes the Xi and MR charts. The Xi chart just involves plotting the 

individual results over time.  The MR chart involves a slightly more complicated 
calculation involving taking the difference between the present sample result, Xi and the 
previous sample result. Xi-1.  Thus, the points that are plotted are: MRi = Xi – Xi-1, for 
values of i = 2,  …, n.    These charts were chosen to be shown here because they are easy 
to construct and are common charts used to monitor processes for which control with 
respect to levels of microbiological organisms is desired.  
 
Xi and MR Chart: The example briefly described here is for log(10) transformed generic E. 
coli.  
 
Steps required for developing Xi and MR charts are: 
 

1. Define the characteristic ……… Generic E. coli levels measured from a 25 gram  
sample, using 3M Petrifilm™  

2. Determine sample size (number of samples) ……….. 1 for Xi and 2 for MR charts 
3. Log(10) transform the data  
4. Calculate mean from control data 
5. Calculate Moving Ranges   
6. Calculate Xi and MR control limits 
7. Place control limits on charts with baseline data 
8. Plot baseline data and connect consecutive points with a line 
9. Place control limits on a blank chart 
10. Collect new data  
11. Plot new Xi and MR values as they are collected 
12. Connect each point to the previous point with a straight line. 
13. View both the Xi and MR charts after each point for out of control signals. 

 
After defining the characteristic and deciding that the Xi and MR is the appropriate 

chart for one’s particular situation, baseline data are collected. Baseline data, both Xi 
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values, (Log(10) transformed) and MR values are placed on a baseline control chart prior to 
calculating control limits, (Figure 1). 

 
 After collecting about 30 Xi values and 29 MRi values, (there is one less MR than 
Xi since the first MR is not calculated until the second Xi is collected), one can calculate 
control limits. Before calculating control limits one must first calculate the average moving 
range, ( RM ) and the average of the Xi values, ( X ). 
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Note:  For computing the standard deviation, σ, needed to establish upper and lower control 
limits, or other criteria used for evaluating a process, a relationship between RM and σ 
when the results are distributed as a normal distribution. The relationship is simply σ = 

RM /d2, where d2 is a constant = 1.128. Thus, for example, the upper Shewhart control 
limit is the mean plus 3 times an average  divided by 1.128.  
 
MR Chart Control Limit Formulae: 
UCLMR= D4 x RM  = 3.267 x 0.93 = 3.04 
LCLMR= D3 x RM  = 0 x 0.93 = 0 
Center Line, ( RM ) = 0.93 
 
Values of D4 and D3, can be found in material on quality control published by professional 
organizations, for example as given in the endnotes2 .  
 
Xi Chart Control Limit Formulae: 

UCLXi = ( X or Target) + (3 x (
2d
RM )) = 1.43 + (3 x (

128.1
93.0 )) = 3.90 

LCLXi = ( X or Target) - (3 x (
2d
RM )) = 1.43 - (3 x (

128.1
93.0 )) = -1.06 

Center Line, ( X ) = 1.43 

(3 x (
2d
RM )) may be replaced with (2.66 x RM ) 

Note: If data are put into a computer, calculator, or spreadsheet, it
1/ 2n
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 might be simpler to 

compute the sample standard deviation, using the “usual” formula,  
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where n is the number of samples (n = 30).  The upper and lower limits are set at   ( X  + 
3s). However, this method may provide wider limits than those calculated using the first 
method (Wheeler and Chambers, 1992).  
 

After calculating control limits and the central value (the mean), horizontal lines at 
these values are placed to the control chart and the baseline data are plotted, Xi and MRi 
versus i (Figure 2). 
 

 
Figure 1: Baseline data plotted on the control charts with limits derived from the 
baseline data. 
 

The baseline data, when plotted, produce a “stable appearing” process. The limits 
are then transferred to a blank control chart and Xi and MRi values are plotted as they are 
collected. After the Xi and MRi are plotted and connected to the previous point with a 
straight line, both the Xi and MR charts are viewed for out of control sequences.  Pyzdek 
(1974) suggests the following out of control rules be used: 
 
Xi Chart: 

1. Any point exceeding a control limit 
2. Eight consecutive points on the same side of the average, ( X ) 
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MR Chart: 
1. Any point exceeding a control limit 
2. Eight consecutive points on the same side of the average, ( RM ) 

 
Figure 2 demonstrates a process with a positive shift in E. coli counts. At about point 

number 19 the process showed a positive shift. This was identified after the eighth 
consecutive point above average on the Xi chart, and confirmed by the out of control point 
exceeding the UCLXi on point number 27. Although the process average had shifted up 
there is no indication that the variation had increased, (Figure 2). If this were the case, then 
the reason for the out of control pattern would be systemic, affecting the processing within 
the plant, and would not be from a source which would only affect a portion of the process 
output, such as a supplier effect.  That is, certain possible causes could be eliminated from 
consideration.   
. 

 
Figure 2: Log(10) E. coli counts illustrating an increase in CFU per ml 
 

A large “movement” between two consecutive sample values in the Xi chart may 
cause the MR chart to exceed the UCLMR while both Xi points were within the control 
limits on the Xi chart.  Such a signal may signify a shift in the process mean: a positive 
shift if the latter result were the large one, for example, (see Figure 3).  Or, if a shift in the 
mean did not occur, then the signal in the MR chart could imply that, while in a systematic 
way the process is not out of control, there could still be some factor associated with one of 
the two samples affecting results.  Consequently, an investigation of the sources associated 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 5 of 36 

 

with the two samples might provide a clue of an uncontrolled factor that could be 
contributing to process variation or could lead to actions that could lead to an improvement 
of the process.  If this were to happen with some regularity, the motivation to investigate 
would be increased. 
 
 If possible a moving range average using more than 2 results might provide a more 
accurate detection of short term variation.  The more terms used though the harder it would 
be to identify probable causal factors.  With computers, it is possible that more than one 
type of moving range could be computed; for example the two-term moving range, and a 5- 
term moving range.  The ideas presented here remain the same regardless of the number of 
terms used in the moving range – just different parameters values for D4 and D3 would be 
used.  
 
 

 
 
Figure 3: A down shift in CFUs per ml. first picked up by an out of control signal on 
the MR chart. 
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Appendix 2: Control Chart for Poisson Distributed Characteristics, with one sample 
size - the C Chart 
 

When counts are not high and there is a non-trivial probability of not detecting any 
colony forming units (recorded as ND), the counts seen on a plate can not readily be 
considered as variable data, as in the previous example (Appendix 1).  In this case, a 
discrete distribution, such as a Poisson distribution or negative binomial distribution can be 
considered de modeling the distribution of counts (where ND is zero).  Microbiological 
examples which fit Poisson-like probability distributions are not as common as those which 
lend themselves to the binomial or normal distributions. The Poisson distribution is 
characterized completely by the value of one parameter, which is the expected value of the 
distribution.  The variance of the Poisson is equal to the expected value, and since the 
lowest possible value is zero, and there is no limit for the highest values, the distribution is 
positive skewed.  Poisson distributions arise under very specialized conditions, when an 
assumption of “pure” or simple uniformity is appropriate.  However, often this assumption 
is not appropriate; rather there are many factors that can affect the results, all acting 
simultaneously so that pure or simple uniformity is not appropriate. Consequently, two 
parameter distributions such as a negative binomial or even binomial distribution, under 
certain circumstances can fit data well (Appendix 3).  However, the Poisson distribution is 
an important one, and it some circumstances it might provide a good fit to the data.  Thus, 
this example is being given. 

 
Data for this example were generated using a Poisson distribution, so the Poisson 

distribution will provide a good fit to the data.  A procedure for determining this is given. 
The example continues with a retrospective analysis, demonstrating one of the features 
(and possible pitfalls) of such an analysis.   

 
The C chart is used when sample size (number of units or amount of material, being 

sampled for one analysis) is constant for all samples; the U chart is used for circumstances 
where sample size may vary. Without loss of generality, it is assumed that the sample size 
is 1; that is, the direct counts for some material are being recorded.  

 
A word of caution:  the Poisson distribution is a skewed distribution, thus α- and β-

probabilities need to be calculated taking into consideration when the probability of being 
above or below the target value is not 50%.   

 
Control Chart for Poisson distribution with a constant sample size=1  
 

For this example the number of organisms that appear on an aerobic plate count 
(APC), Petrifilm™, from pre-operational food contact surfaces swabs, (1 square inch, 2.54 
cm x 2.54 cm) are counted and expressed as Colony forming units, (CFUs), per square 
inch, (sampling area). For this example the area is swabbed with moistened cotton tipped 
swab. The swab is used to plate the results on Petrifilm™. The number of colonies is 
counted after a 48 hour incubation period.  
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The data from the one hundred swabs are given in Table 1. (Note: these data are not 
actual data, but were generated using a Poisson distribution). The table includes the 
observed frequency of results, the predicted frequency assuming a Poisson distribution 
estimated from the data using the maximum likelihood estimate (MLE)3; the likelihood 
ratio contribution for the observed result, the likelihood ratio contribution for the observed 
result when combining the results greater than 6 into one category, and the chi-square 
statistic for the observed result, which is the square of the difference between the observed 
and expected frequencies divided by the expected frequencies, (f-e)2/e, where f is the 
observed frequency, e is the expected or predicted frequency derived from, using the 
estimated Poisson distribution.  The likelihood ratio contribution is minus twice the product 
of the observed frequency and the difference of the natural logarithms of the observed and 
expected frequencies, or, symbolically: 

 
    -2f[ln(f) –ln(e)], 

 
where “ln()” is the natural logarithm. 
 
.   The sum of the chi-square and likelihood-ratio contributions are statistics that are 
asymptotically distributed as a chi-square with k-1 degrees of freedom, where k is the 
number of distinct results (or categories) for which estimates are made.  The likelihood 
ratio when combining results greater than 6 has 8 categories so that the chi-square 
approximation is based on 7 degrees of freedom.  The results do not indicate any severe 
lack of fit, notwithstanding the 13 negative results that were observed when only 9 were 
predicted, and the large observed value of 11, which would not be predicted to be seen very 
often.      
 
Table 1: Results from the 100 preoperational swab, counts, frequency of results, and 

predicted frequency using maximum likelihood estimate for Poisson distribution 
 
 

                                                 likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          7 df        7 df 
    0         13          9.1          9.35          9.35        1.701 
    1         20         21.8         -3.40         -3.40        0.144 
    2         27         26.1          1.78          1.78        0.029 
    3         19         20.9         -3.62         -3.62        0.173 
    4         10         12.5         -4.53         -4.53        0.515 
    5          6          6.0         -0.04         -0.04        0.000 
    6          2          2.4         -0.74         -0.74        0.069 
    7          1          0.8          0.38          5.70        1.129 
    8          0          0.2           .             .           . 
    9          1          0.1          5.43           .           . 
   11          1          0.0         11.33           .           .   . 
   sum        100          100           16.0            4.50          3.76 
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Accepting that the underlying distribution of results is a Poisson distribution with 
expected value of 2.4, the steps involved in using a C control chart are: 

 
1. Define the characteristic…  APC counts per sampling location 
2. Determine sample size ….  1 square inch area, 1 sampling area 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Plot the baseline data 
7. Connect consecutive plotted points with a straight line 
8. Place control limits on a new chart 
9. Collect and plot data as collected 
10. Connect each point to previous point with a straight line 
11. Observe chart for out of control signals after each point 

 
The formula for C Center line and control limits are: 
 

Average Count = =C
SamplesofNumber

CFUsofNumberTotal
__

___  

where: Sample_size = 1 and Number_of_Samples = k = 100 (in this example).  
 

=C 40.2
100
240

=   

Center Line = =C  2.40  
 
Control Limit Calculations: 

 Standard Deviation: σ =  C   - that is, it is assumed that the distribution is a Poisson 
distribution.   
 
Upper Control Limit C:  
UCLc = ( )( )CC ×+ 3  
UCLc = ( )( ) 05.740.2340.2 =×+  
 
Lower Control Limit C: 
LCLc = ( )( )CC ×− 3  
LCLc = ( )( ) 25.240.2340.2 −=×− so LCLc = 0 
 

For the upper limit, if the underlying distribution was a Poisson with expected value 
equal to 2.40, then the probability of a result greater than 6 is 1.16%; and greater than 7 is 
0.334%.  This depending upon the α -probability desired, either a result greater than or 
equal to 7 or 8 would be considered as presumptive evidence of an out of control process.  
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 For the lower limit, the probability of 0 is 9.1%, which for the α -probability (in this 
document) would be considered as too high.  Thus, a single value of 0 would not, by itself 
be considered as an indication of a process change.   
 

If an actual Poisson distribution was not assumed or any other distribution could not 
be found to fit the data, then the square root transformation, or its variations (x+3/8)1/2, 
could be used for plotting and construction a control chart.    

 
In this example, the SPC chart of Figure 1 is constructed, with the upper limit of 7 

and the lower limit of 0, derived assuming that the results are distributed as a Poisson 
distribution.  The last 40 points are shown on the chart.  
 
 

 
Figure 1:   A C chart showing the last 40 data points of the baseline data plotted 

 
Upon an examination of this chart, out of the 40 points, only one had a value of 7 

(or more), and there were 8 zero results.  Moreover there does not seem to be a consistent 
trend (in actuality CUSUMS or moving averages would be computed as well to judge 
trends).  By these usual rules, it might be reasonable to conclude that the 40 points plotted 
represent a set of data for which the process is in control.  Only one result reached the value 
of 7, but that, by itself, would not be a reason to suspect an out-of control situation.  
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However, a further examination might lead to some questions and further 
exploration of the process.  The probability of 8 or more zero results from 40, when the 
underlying distribution is Poisson is about 2.5%; however, what may be of interest is that 
the 8 values seemed to be “clustered” with respect to time, where 3 zero results occurred 
within the first 6 times of sampling, and the other 5 zero results occurred within a span of 
11 samples 18 samples later.   

 
To explore the possibility that this pattern represents a possible source of 

unexplained variation, consider a one-sided CUSUM for the occurrence of negative results. 
That is, consider a CUSUM, Sk, where, S0 = 0, k k 1 kS max(0,S p−= + −δ ) ,  δk is the 
Kronecker delta function for a negative result for the kth sample ( = 1 when the result is 
negative, otherwise equal to 0), and p is a constant equal to the probability of a negative 
result ( = 0.091).  Let the signal for “out of control” – meaning that the probability of a 
negative, somewhere, was greater than 9.1% - be 5.  That is, when the CUSUM value is 
equal to or greater than 5 the CUSUM signals and the null hypothesis that the probability of 
a negative was equal to or less than 9.1% over the 40 samples would be rejected in favor of 
the alternative hypothesis that for some time the actual probability was greater than 9.1%.  
The reason for selecting the signal limit of 5 is: the ARL for this CUSUM with a signal 
limit of 5 is about 346 when the underlying probability of a negative result is 9.1%, as 
predicated from the assumed Poisson distribution with parameter value equal to 2.4.  Thus, 
if this CUSUM rule had been constructed before the samples were being collected, the one 
sided α -probability would have an assigned value of 0.29%.  

 
Calculating this CUSUM with these 40 samples, at the 34th sample, the CUSUM 

exceeded 5.0 so that a signal would have occurred.  Table 2 provides an example of a 
spread sheet that can be used for the calculations of CUSUM.  The above formula for the 
CUSUM implies that the CUSUM value at the kth sample depends on the CUSUM value 
for the (k-1)th  sample and an increment value, which is the value of the kth sample minus 
the target constant, μ.  The updated value of the CUSUM for the kth sample is the sum of 
the previous CUSUM value plus the increment, provided this sum is not less than zero; 
otherwise it is set equal to zero.  Thus the formula for the CUSUM can be written as: 
 
  CUSUMk =   max(0, CUSUMk-1 + incrementk) 
 
where the value of the increment = δk - p.   Table 2 presents the calculations of the CUSUM 
for the 40 samples using the above formula.  
 

As can be seen from Table 2, the CUSUM value exceeds the value of 5 at the 34th 
sample, thereby suggesting that the process mean probability of a negative exceeded its 
target value of 9.1% at least some time at or before the 34th sample.  However, the 
probability of a Type 1 error with respect to the statistical question, given the 40 data 
points, is not the same as the assigned α-error probability given above (based on the ARL).  
The statistical question involves deciding between two hypotheses: the null hypotheses, H0: 
the probability of negative results is never larger than 9.1% over the period of time that the 
samples were collected; versus the alternative, HA, that at some time, the probability 
exceeded 9.1%.  To help evaluate possible answers, the probability of seeing a signal 
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within 40 samples is needed, when the probability of a negative is equal to 9.1% over the 
40 samples, thereby assuming that the null hypothesis is true.  The 2nd percentile of the 
distribution of run lengths (estimated by simulation using the binomial random generator 
for SAS®, release 8.0) is about 40 samples, indicating that the retrospective α -probability 
of a Type 1 error is about 2% (that is, of having a signal within the first 40 samples when 
the probability was 9.1% of a negative result).  
 

Table 2:  Calculation spreadsheet for CUSM. 
 
                             target 
        sample    sample    fraction       increment 
        number    result    positive    (result-target)    CUSUM 
           1        0         0.09           -0.09          0.00 
           2        0         0.09           -0.09          0.00 
           3        1         0.09            0.91          0.91 
           4        0         0.09           -0.09          0.82 
           5        1         0.09            0.91          1.73 
           6        1         0.09            0.91          2.64 
           7        0         0.09           -0.09          2.55 
           8        0         0.09           -0.09          2.46 
           9        0         0.09           -0.09          2.36 
          10        0         0.09           -0.09          2.27 
          11        0         0.09           -0.09          2.18 
          12        0         0.09           -0.09          2.09 
          13        0         0.09           -0.09          2.00 
          14        0         0.09           -0.09          1.91 
          15        0         0.09           -0.09          1.82 
          16        0         0.09           -0.09          1.73 
          17        0         0.09           -0.09          1.64 
          18        0         0.09           -0.09          1.55 
          19        0         0.09           -0.09          1.46 
          20        0         0.09           -0.09          1.37 
          21        0         0.09           -0.09          1.28 
          22        0         0.09           -0.09          1.18 
          23        0         0.09           -0.09          1.09 
          24        1         0.09            0.91          2.00 
          25        1         0.09            0.91          2.91 
          26        0         0.09           -0.09          2.82 
          27        1         0.09            0.91          3.73 
          28        0         0.09           -0.09          3.64 
          29        0         0.09           -0.09          3.55 
          30        0         0.09           -0.09          3.46 
          31        1         0.09            0.91          4.37 
          32        0         0.09           -0.09          4.28 
          33        0         0.09           -0.09          4.19 
          34        1         0.09            0.91          5.09 
          35        0         0.09           -0.09          5.00 
          36        0         0.09           -0.09          4.91 
          37        0         0.09           -0.09          4.82 
          38        0         0.09           -0.09          4.73 
          39        0         0.09           -0.09          4.64 
          40        0         0.09           -0.09          4.55 
 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 12 of 36 

 

Retrospective analyses such as this one are fraught with problems regarding the 
“true” magnitude of the α - and β- probabilities.  The only reason that this CUSUM was 
designed, after the fact, was because of the pattern of negative results that were observed 
and the higher than expected frequency of them in the 40 samples.  However, any truly 
“random” sequence of numbers could turn up patterns that are suggestive of possible non-
randomness suggesting a more complex generator (of the numbers), which, when 
statistically tested for, would result in a low calculated α -probability.  Notwithstanding 
these types of problems, the results of this analysis might suggest or provide evidence of 
the existence of a factor that is causing excess process variation, and that further 
examination of the process would be worthwhile; for example, the producer might explore 
to see if there were any common sources peculiar to the initial 6 and the later 11 data 
points.  If there were, then particular sharper criteria or rules related to the possible 
common sources could be constructed; if there were not, then the observed pattern could be 
considered as arising due to statistical variation.  
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Appendix 3:  Count Data that is not Poisson distributed, with many non-detect values. 
 

This example presents data that do not seem to have arisen from a Poisson distribution.   
 

Table 1: Obtained counts, together with goodness-of-fit statistics for a Poisson 
distribution. 

 
                                                  likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          7 df        7 df 
    0         15          4.9         33.39         33.39       20.576 
    1         19         14.8          9.40          9.40        1.168 
    2         22         22.3         -0.65         -0.65        0.005 
    3         15         22.4         -12.0         -12.0        2.447 
    4         10         16.9         -10.4         -10.4        2.790 
    5          6         10.1         -6.31         -6.31        1.696 
    6          4          5.1         -1.93         -1.93        0.234 
    7          2          2.2         -0.36         13.68        2.643 
    8          0          0.8           .             .           . 
    9          1          0.3          2.58           .           . 
   10          3          0.1         21.53           .           . 
   11          1          0.0          7.57           .           . 
   15          1          0.0         19.55           .           . 
   20          1          0.0         37.40           .           .  .     
  Sum         100         100         99.68         25.10         31.56 
 
With 7 degrees of freedom, the likelihood ratio test and the chi-square test for lack of fit are 
significant, with significance levels less than 0.01, suggesting that the fitted Poisson 
distribution does not fit the data well. 
 
 A two parameter distribution, the negative binomial is a distribution which is often 
used to model the distribution generating the data when the Poisson does not provide a 
good fit.  The probability density, f(k|p, n) of the negative binomial is: 
 

n kf (k | p, n) K(n,k)p (1 p) , k 0,1,....= − =  
 
where n and p are parameters whose values are to be estimated and K(n, k) is a binomial-
like coefficient.  The above data were fit to a negative binomial, using a maximum 
likelihood estimates (MLE) of the parameter values.  The MLE of p and n were 0.3655 
1.7342, respectively.  Table 2 provides summary statistics for the MLE fitted negative 
binomial.  The likelihood ratio with 8 degrees of freedom was obtained by pooling all the 
results greater than 7 into one category. 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 14 of 36 

 

Table 2: Obtained counts, together with goodness-of-fit statistics for a negative 
binomial distribution 

                                                                                                     likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          8 df        8 df 
    0         15         17.5         -4.56         -4.56        0.347 
    1         19         19.2         -0.42         -0.42        0.002 
    2         22         16.7         12.23         12.23        1.709 
    3         15         13.2          3.93          3.93        0.257 
    4         10          9.9          0.24          0.24        0.001 
    5          6          7.2         -2.17         -2.17        0.197 
    6          4          5.1         -1.97         -1.97        0.245 
    7          2          3.6         -2.34         -2.34        0.704 
    8          0          2.5           .           -1.38        0.075 
    9          1          1.7         -1.07           .           . 
   10          3          1.2          5.69           .           . 
   11          1          0.8          0.48           .           . 
   15          1          0.2          3.69           .           . 
   20          1          0.0          7.84           .           .   . 
  sum          100         100a         21.57         3.55         3.54 
a) The sum includes predicted numbers for counts not shown, for example, a count of 12, up to a count of 20. 
 
From Table 2 it appears that the fitted negative binomial distribution fits the data well.  
Assuming that the distribution generating the count data is the estimated negative binomial 
distribution, the probability that an individual count would be greater than or equal to 18 is 
0.133%.  Thus, the individual limit, corresponding to the Shewhart limit of 3 standard 
deviation units above the mean for a normal distribution, would be 18, using the negative 
binomial distribution. 
 
 The assumption that these data were collected for a process under control is 
important here.  The 15 non-detects may suggest a measurement problem, insofar as the 
number of these seems high compared to what might have been expected if it were believed 
the distribution of counts would be Poisson distributed. This might be one area of further, 
retrospective, exploration.  Many other distributions could be fit to these data directly, for 
example Poisson with added zeros, or other types of distributions.  
  
 As suggested in this document, another possible way of constructing a SPC plan 
and chart is to consider transformations of the data in an attempt to make the data more 
symmetric and nearly normal.  Figure 1 is a comparison of the box-plots, of the square root 
transformed counts with the raw counts.  The square root transformed counts are multiplied 
by 2, so that the means of the two sets of numbers are nearly the same. As is clearly seen, 
the square root transformed results provide a more symmetric distribution than that of the 
raw counts.  The means and standard deviations for the raw counts and twice the square 
root of the counts, and the control limits derived from them are given in Table 3. 
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Table 3: Means, standard deviations and control limits when using raw counts and 
square root transformed counts. 

 
                                           limit:      limit 
                                          3 std dev    using 
                                  std      above      square 
     type              mean       dev      mean        root 
 raw counts             3.01      3.20      12.62         . 
twice square root       2.97      1.79       8.36      17.47   

 
The Shewhart limit of 3 standard deviations above the mean using the square root 
transformation is 18 (rounding up from the 17.47 given in Table 3), the same as that 
derived using the fitted negative binomial.  From the 100 raw counts, only 1 was above 18. 
 
 
                   12 + 
                      | 
                      |            0 
                      | 
                   10 +            0 
                      | 
                      |            0           0 
                      | 
                    8 + 
                      |                        0 
                      |            | 
                      |            |           | 
                    6 +            |           | 
                      |            |           | 
                      |            |           | 
                      |            |           | 
                    4 +         +-----+     +-----+ 
                      |         |     |     |     | 
                      |         |  +  |     *--+--* 
                      |         |     |     |     | 
                    2 +         *-----*     +-----+ 
                      |         |     |        | 
                      |         +-----+        | 
                      |            |           | 
                    0 +            |           | 
                       ------------+-----------+----------- 
                         count data (x)       2 x1/2 

Figure 1: Box-plots of counts and twice the square root of the counts.  The high values 
of 15 and 20 for the count data are not shown. 
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Appendix 4  - Control Chart for Binomially Distributed Data, with one sample size 
 

This example is a very important one since often qualitative analyses, looking just for 
the presence of some pathogen in samples, are performed.  A chart that can be used to track 
the control of a process with respect to the presence of some pathogen on samples is called 
a “NP” - control chart.  Generally such charts can be used for a binomially - like distributed 
characteristics (a two-class attribute test), for example, the detecting of Salmonella spp on 
samples.  One of the classifications is assigned the name “defective” or positive, and it is 
that classification for which process control is measured.  P refers to the percentage or 
probability of “defective” units (positive units of some product); the magnitude of P is to be 
controlled (usually to be low as possible).   

 
 The letters “NP” are used as a mnemonic for the plotting of the number of “positive 

results”; the expected value of the number of positive results is equal to the sample size, N, 
times the assumed proportion of positive samples, P – or, symbolically, NP.   

 
In this example, it is assumed a sample size of 50 product tests, constituting one 

sample, for which the number of positive results is the output.  A NP-chart is a plot of the 
number of “positive” test results within a sample over time. The example given in 
Appendix 5 provides methodology that can be used when the sample sizes are not the same 
(using a P-chart or a transformation of the results). 
 
Control Chart for Binomially Distributed Data Plotted as the Number of Positive 
Outcomes from an Inspection 
 

For the NP - control chart, “N” indicates sample size, (often an upper case N is used to 
symbolize population size, but it is the SPC convention to use an upper case N which 
stands for sample size – the number of units being considered together as one sample), and 
P represents the proportion of the units that are “defective,” as described above.  The set of 
N units is referred to as a “sample”, so that the first N-unit set is labeled sample 1; the 
second N-unit set is labeled sample 2, and so forth.  An NP-chart is simply a plot of Xi  =  
the number of defective units in the ith sample, versus sample index value (or some other 
appropriate time measure), with lines connected between successive data points. The steps 
involved in determining the control limits for a NP-control are: 

 
1. Define the characteristic…  Presence of Salmonella spp. in 25 grams of product 
2. Determine sample size…..  Sample size = 50, 25-gram units 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Plot the baseline data 
7. Connect consecutive plotted points with a straight line 
8. Place control limits on a new chart 
9. Collect and plot data as collected 
10. Connect each point to previous point with a straight line 
11. Observe chart for out of control signals after each point 
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For this example, Figure 1 is the number of Salmonella spp. positive units identified in 
a sample of 50 units of product is plotted versus sample number (or time of sampling) on 
the NP control chart.   After about 30 data points have been collected, (a rule of thumb for 
normal or nearly normal data is that about 30 data points should used for control limit 
calculations) the control limits are ready to be calculated.  

 
 

 
Figure 1. Base line Salmonella spp. data collected in sample size = 50. 
 
The formula for NP Center line and control limits are: 

Average Proportion Positive = =P
SamplesofNumbersizeSample

Xi
k

i

___
1

×

∑
=  

where Sample_size = N = 50; and Number_of_Samples = k = 40 (in this example). 
 

=P 0825.0
4050

165
=

×
 = 8.25% 

 
Center Line = =PN Sample Size x =P 50 x 0.0825 = 4.125 
 (This gives the expected number of positive results per sample). 
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Control Limit Calculations: 
 Standard Deviation: σ =  (1 )NP P× −   - that is, it is assumed that distribution is a 
binomial distribution.  In actuality this may not be true even when the process is in control 
because of inherent intra-sample correlations that would cause the expected value of the 
number of positive results to vary by sample.  

Note:  An estimate of the standard deviation can be computed as: σ = 

k
2

i
i 1

N (P P)

k 1
−

−

−

∑
, 

where k is the number of samples (= 40) and Pi is the fraction of positive results (of the N 
analyses) for the ith sample.     
 

In this example, it is assumed that “the best” control is achieved so that the 
deviations from the expected value follow a binomial distribution, implying that the 
standard deviation is proportional (p(1-p))1/2, where p is the expected percentage of positive 
units.   If this assumption is incorrect and that the expected value of the probability of 
defects on a unit changes from day to day or sample to sample, a condition known as over-
dispersion may exist.  In this case, the standard formula for standard deviation, or the MR 
statistic discussed in Appendix 1, could be used, for the number of positive results, or for 
the arc-sine transformation: yi = N sin-1(Pi

1/2).   Evidence of this condition may be identified 
by plotting the baseline data on the chart with control limits calculated in the manner 
shown and observing many point either “out of control” or at least near the extremes, but 
that the deviations seem random and symmetric. More formal statistical tests for “over-
dispersion” can be made using statistical programs such as PROC GENMOD of SAS4.  
Such a pattern might arise, when there are uncontrollable factors, such as day-to-day 
variations attributable to environment or slight, but uncontrollable differences, of supply 
input quality.  In this case, the process standard deviation can be computed using the above 
standard formula.  However, if this case does exist, the producing establishment should 
strive to eliminate some of these sources that contribute to the variability of the process, 
particularly when the establishment determines that the characteristic should be binomially 
distributed.  Obtaining better control and eliminating factors that cause over dispersion 
usually leads to improvements, (reduction in percentage of defective units in this example) 
which means new control limits will need to be calculated once the improvement is 
documented.   
 

In the following it is assumed a binomial distribution describes the number of 
positive results. 
 
Upper Control Limit NP:  
UCLNP = ( )( ))1(3 PPNPN −××+  
1- =P 1 - 0.0825 = 0.9175 
UCLNP = ( )( ) 96.99175.0125.43125.4 =××+  
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Lower Control Limit NP: 
LCLNP = ( )( ))1(3 PPNPN −××−  

LCLNP = ( )( ) 071.19175.0125.43125.4 =−=××−  
 

From the above data, the average proportion of Salmonella spp. positive was 
0.0825. If the expected proportion of positive results for each 50-set sample was 8.25%, 
then the average or expected number of positive results in a 50-set sample is 4.125, 
( =PN 4.125), and the control limits would be 9.96 and 0 for the UCLNP and LCLNP, 
respectively.  A value of 10 then would be considered as out of control. (The actual 
probability of 10 or more positive units in 50 units, when the probability of a positive is 
8.25 % and the true underlying distribution is binomial, is 0.70%, which provides a 
reasonably low α-error rate.)  Since the calculated value of LCLNP is a negative value and 
since one can never find fewer than zero positives in a sample, the LCLNP defaults to zero. 
(A result of zero may not be considered by itself to be an out of control event, since the 
probability of no positive results from 50 samples, given a true percentage of 8.25% and a 
binomial distribution, is 1.35 %, which is substantially larger than the nominal value of α 
of 0.135% used by Shewhart, when the underlying distribution is normal).  By placing the 
control limits and center line on the baseline data run chart a control chart is produced 
(Figure 2). 
 

 
Figure 2. NP control chart of baseline data 
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The control limits are calculated and the plot of the baseline data confirms the 

control limits appear reasonable, as in Figure 2. The control limits are then transferred to a 
blank control chart, or extended from the control chart containing the baseline data, and 
data points are plotted and connect to the previous plotted point with a straight line. Figures 
3 and 4 demonstrate two control charts that show a period of expected performance 
followed by an out of control period.  Figure 3 shows a process with the incidence of 
Salmonella spp. increasing, while Figure 4 shows a reduction in Salmonella spp. Both of 
the charts thus show out of control conditions, because both of these red point series are 
‘unexpected’ from what would be seen, based on the baseline data and the assumption that 
the process was in control.  
 
 

 
Figure 3. NP chart showing an increase in Salmonella spp. 
 
 
The identification of the out of control signal suggests an investigation as to what caused 
the out of control condition. It is through the identification and control of factors that 
adversely affect the process that leads to process improvement. Once these are controlled 
often a new level of quality is achieved. A new level of quality in this case can be identified 
by an “out of control” condition where an unexpectedly high number of consecutive points 
fall below average (Figure 4). The informed manufacturer at this point would identify the 
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conditions required to produce these better results and after a brief time calculate new 
control limits based on the new level of quality that the process is producing. There are 
methods described for computing new control limits, see Wheeler and Chamber, 19925, for 
examples. 
 
 

 
Figure 4. NP chart showing a reduction in Salmonella spp. 
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Appendix 5 - Control Chart for Binomially Distributed Data Plotted as Proportions (P 
Chart), with varying sample sizes 

 
The example given in Appendix 4, of the binomial control chart plotted the number of 

positive results out of a sample of 50 units.  The characteristic feature in that example was 
that the number of units per sample was fixed (= 50), so that the expected number of 
positive results per sample (of 50 units) was the same.  However, in many situations the 
sample size is not the same and thus the expected number of positive results would not be 
the same. Thus plotting the number of positive results is not appropriate for a control chart 
since the underlying assumption for the data to be used for plotting, namely, that the results 
are from a common distribution when the process is under control, would not be satisfied.  

 
A simple adjustment might be to plot the proportion of positive results, Pi rather than 

the number of positive results; however, while the expected value would be same for all 
samples, the expected variances of the results will no longer be the same.  Thus, such data 
would not be usable for plotting for the reason given above.  However, one possible way of 
correcting this is to plot: Zi =  iN  (Pi – P), where P is the assumed true proportion of 
positive results and Ni is the sample size for the ith sample.  In this case, the expected value 
of Z is zero, and the standard deviation of Z is [P(1-P)]1/2.  For sufficiently large Ni, the 
distribution would be the same (approximately normal) for each plotted data point, so that 
the Zi could be used for plotting a control chart.  A control chart for Z would have Shewart 
control limits of  +3[P(1-P)]1/2.  CUSUMS and moving averages could be constructed with 
the Zi values.  Or, if the sample sizes were not that large, an arcsine transformation: yi =  
sin-1(Pi

1/2) could be used, setting Zi = iN  (yi – y ).  
 
If the number of distinct values of Ni is small (say two or three) it would be possible to 

just plot the Pi, and have two or three Shewhart limits depicted on the same chart. The 
following is an example of a P-chart with two Shewhart limits for two values of Ni ( = 50 
or 100).  . 

 
Similar as above for the other charts, the steps involved are: 
 
1. Define the characteristic………  Presence of Salmonella spp. 
2. Determine sample size or sizes …  Sample size = 50 or 100 25-gram units 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Convert observations to proportions 
7. Plot the baseline data 
8. Connect consecutive plotted points with a straight line 
9. Place control limits on a new chart 
10. Collect and plot data as collected 
11. Connect each point to previous point with a straight line 
12. Observe chart for out of control signals after each point 
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For this example, Figure 1 is the number of Salmonella spp. positive units identified in 
a sample of 50 units of product is plotted versus sample number (or time of sampling) on 
the NP control chart.   After about 30 data points (results from 30 samples) have been 
collected, (a rule of thumb for normal or nearly normal data is that 20-30 data points should 
used for control limit calculations) the control limits are ready to be calculated. These data 
will be used to calculate control limits when these values are converted to proportions.  
 
 

 
Figure 1. Base line Salmonella spp. data collected in sample size = 50 
 
 
The formula for P Center line and control limits are: 
 

Average Proportion Positive = =P
SamplesofNumbersizeSample

Xi
k

i

___
1

×

∑
=  

where Sample_size = Ni = 50; and Number_of_Samples = k = 40 (in this example). 
 

=P 0825.0
4050

165
=

×
 = 8.25% 
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Center Line = =P 0.0825 
 
Control Limit Calculations: 

 Standard Deviation: σ =  n
PP )1( −×

  - that is, it is assumed that distribution is a 

binomial distribution.   
 
When Ni = 50 
 
Upper Control Limit P:  

UCLP = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×
×+

n
PPP )1(3  

1- =P 1 -0.0825 = 0.9175 

UCLP = 1992.0
50

9175.00825.030825.0 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×+  

 
 
Lower Control Limit P: 

LCLP = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×
×−

n
PPP )1(3  

LCLP = 0342.0
50

9175.00825.030825.0 −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×−  so LCLP = 0 

 
For the process that the data were collected from above the average proportion of 
Salmonella spp. positive was 0.0825. The average or expected proportion of positive 
samples in a sample size of 50 is 0.0825, ( =P 0.0825), and the control limits calculate to 
be 0.1992 and 0 for the UCLP and LCLP, respectively.  By placing the control limits and 
center line on a P control chart and then transforming the actual baseline data into 
proportion by dividing by the sample size, (50 for the baseline data) and plotting these data 
on the control chart, the baseline data can be viewed for stability (Figure 2). Figure 3 gives 
a schematic showing the relationship of NP-charts and P-charts when the sample size is the 
same (=50).   
 
 When the sample size is 100, the Shewhart control limits are determined using the 
same formulas as above, expect substituting the sample size 100 for 50.   The target mean 
remains the same at 0.0825; the upper limit decreases to 0.165; and the lower limit would 
be zero.  For a sample size of 100, the probability of no positive samples is 0.018%, well 
below the α-probability of 0.135%. The probability of one or zero positive results in a 100-
sample set is 0.18%, so that even one positive result could be used as the lower limit when 
the sample size is 100.  
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Figure 2. P control chart of baseline data 
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Figure 3. A comparison of center line and control limits for an NP and P-charts. 
 
 

A control chart can be set up to accommodate two sample sizes. The new control 
chart has one lower control limit, (zero), one center line and two upper control limits, one 
for sample size 50 and one for sample size 100 (Figure 4). Data for both sample sizes are 
plotted on the chart. On this chart observations from a sample of size 50 are shown in black 
and observations from a sample size of 100 are shown on blue. All observed values are 
divided by their respective sample sizes before plotting. Notice how the data are connected 
in chronological order and sample size differences can be handled.  
 
 An interpretation of this chart is as follows: 1. the process was operating in a 
relatively stable manner for the first third of the chart. The result at sample number nine, 
where the data point fell between the two control limits, does not indicate an out of control 
signal since this point is associated with a sample size equal to 50 and this point is below 
the UCLP for sample size 50. 2. Even though the criteria for declaring a process out of 
control did not occur, the pattern of results suggested that improvements could be made.  
Suppose such an attempt to change the process was made in order to try to decrease the 
process mean, and the data points when the processing was conducted after the change was 
plotted. In this example (Figure 4), the change seems to have made a difference as the level 
of positives dropped after the change was made. 3. Further suppose that after additional 
data were collected so that there are about 30 values (in this example 28) new control limits 
were established for this process.  Then the (data corresponding to the points in the circle 
would be used for the calculations of new control limits using the above formulas with 
sample size equal to 100 or 50). 
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Figure 4. P Chart developed to accommodate two sample sizes 
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Appendix 6:  Control Chart for Poisson distribution for more than one sample size or 
when one expresses results in a unit size not equal to sample size -  the U Chart 
 
 When data are collected using more than one sample size (amount of material 
sampled) and an underlying Poisson – like distribution can be assumed, a U chart may be 
used to do process control. A U chart is a plot of observation per sample, normalized to a 
fixed unit size.  
 
 In this example APC counts are measured for a fully cooked product. Briefly, a 10 
% dilution is prepared by removing10 grams of fully cooked product from post-packaged 
product aseptically and placing it in 90 ml of diluent, stomached for 60 seconds and then 1 
ml is plated and incubated for 48 hours. After the incubation CFUs are counted and data are 
reported as CFUs per gram. Since the actual amount of product in the one ml of plated 
diluent is actually 0.10 gram a situation is presented where count data are reported in units 
other than that equal to the sample size, and counts are low. At later time, the size if the 
same changes to a value different than 0.10 grams.  In this case, all data could be 
standardized to be expressed in per gram units, where control limits would depend on the 
same size, in a similar fashion as given in Appendix 4, for P- charts.  The standardization is 
just dividing the counts by the sample size: U = C/sample size.  For these reasons a U chart 
is chosen as the chart to use for process control for this characteristic.  
Actual Counts of the last 100 samples were: 
 

Table 1.  Results from the previous 100 APC, (CFUs) per ml and the frequency of 
results 

 
Count per ml.                 Frequency  

0 49 
1 29 
2 13 
3   3 
4   3 
5   1 
8 1 

                    11                                     1 
 
For graphing purposes, each observation is divided by the sample size to express the results 
as CFUs per ml, (a 1 CFU outcome is reported as 1/.1 = 10 CFUs per ml 

 
The steps involved in using a U control chart are: 
 

1.    Define the characteristic…  APC counts per gram 
2.    Determine sample size …. 1 ml, .1 gram 
3.    Collect baseline data 
4.    Calculate Control Limits 
5.    Place Control Limits on chart of baseline data 
6.    Standardized the data by dividing by sample size 
7.    Plot the baseline data 
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8.    Connect consecutive plotted points with a straight line 
9.    Place control limits on a new chart 
10. Collect and plot data as collected 
11. Connect each point to previous point with a straight line 
12. Observe chart for out of control signals after each point 

 
The formula for U Center line and control limits are: 
 

Average Count = =U
SamplesofNumberSizeSample

CFUsofNumberTotal
___

___
×

 

Where: Sample_size =0 .1 and Number_of_Samples = k = 100 (in this example). 
 

=U 10
1001.0

100
=

×
 CFUs per ml 

Center Line = =U  10  
 
Control Limit Calculations: 

 Standard Deviation: σ =  n
U

  - that is, it is assumed that distribution is a Poisson 

distribution.   
 
The control limits for the U chart are calculated as:  
 
Upper Control Limit U:  

UCLU = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+

n
UU 3  

UCLU = 40
1.0

10310 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+  

 
Lower Control Limit L: 

LCLU = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−

n
UU 3  

LCLU = 20
1.0

10310 −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+ so LCLU = 0 

These control limits were then placed on a single attribute, (U) control chart and the last 40 
data points are plotted to view how some of the baseline fit on the chart (Figure 1). 
 

The control chart illustrates how the user divides each observation by the sample 
size and plots the standardized results, (for the first observation 1 CFU is divided by 0.1 
gram which provides a value of 10, so 10 is plotted as the first point, representing 10 cfu/g). 
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If the sample were to change to 0.5 instead of 0.1, then the control limits would 

change: the upper control limit would equal: 10 + 3(10/0.5)0.5 = 23.4, and the lower control 
limit would equal 0, since 10 – 3(10/0.5)0.5 < 0.   
 
 

 
Figure 1: U Chart of CFUs per gram of fully cooked product 
 
As with the P chart, a U chart can also accommodate more than one sample size, and, as 
with the P chart, the larger the sample size the closer the control limits are to the center 
line. 
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 Appendix 7: Control Charts for Rare Events: 
 
The Failure Control Chart, F Chart: 
 
 For events that are rare, to the extent that reasonable subgroup sample sizes would 
yield many zero values, a Failure Control Chart (F Chart) is an effective method for gaining 
an understanding as to whether the rate of the event is increasing, decreasing or remaining 
approximately stable. This particular chart was in fact developed to help answer this 
question. When the process is in control, the duration of time between events would be 
expected to follow an exponential probability distribution, which is described by a single 
parameter, given everything else being equal.  In other words, it can be assumed that the 
number of failures expected over any number of times would be proportional to the number 
of samples, and the distribution of the number of failures would be binomial. The 
approximation made for determining the control limits is that the number of samples can be 
considered a continuous variable, associated with time.  This assumption is reasonable 
when it is assumed that the failure rate is small.  When the process is in control, it is 
assumed that the value of the failure rate parameter is constant over time.   
 
 In order to develop an F Chart the average time (number of samples) between 
events must be estimated. After an event, the time or number of samples since the last event 
are determined. The distribution of the times between events is assumed to be exponential 
distribution when the process is under control.  Again the rule of thumb of observing 20- 30 
or more events, to obtain a good estimate of the average time between events is 
recommended.  The average time is referred to as “Mean Time Between Failure,” MTBF, 
to keep consistent with reliability engineering convention.  The probability of having not 
failed based on the current MTBF is calculated as follows: 

Reliability: R = Probability of not failing = MTBF
t

e
−

 where t is the number of 
samples since the previous failure. 

 
High values of R imply low values of t, which would be undesirable.  
 
 The follows from the definition of the exponential distribution, which has the 
cumulative distribution function, cdf(t) = 1- exp(-t/β), where β is a constant.  The expected 
value of a random variable distributed as an exponential distribution with parameter β is β.  
Thus the value of MTBF is estimated from baseline data consisting of many samples by 
just dividing the number of samples by the number of failures, assuming that this last value 
is not zero.  To get a reasonable accurate estimate of MTBF, following the normal 
convention, the number of samples collected should provide about 20-30 failures.  
However, the standard error of this estimate assuming that the number of samples between 
failures is distributed as an exponential distribution is MTBF/n0.5, where n is the number of 
failures.  The error CV thus is 100%/n0.5.  To have an error CV of less than 20% would 
require more than 25 failures; to have CV of less than 10% would require more than 100 
failures.  If it is anticipated that the failure rate would be low, so that MTBF would be 
large, this latter number of failures might be difficult to obtain.  However, an error CV 
larger than 20% could impact on the accuracy of the control charting. Thus it seems that at 
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least 20-30 positive results, and possibly more, should be used when computing MTBF for 
a control chart   
 

For example, during a previous year, a plant collected 4,400 E. coli 0157:H7 samples, 
of those samples, 44 samples tested positive. The MTBF can be determined by dividing the 
number of sample by the number of positives: 

 

MTBF = 100
44

4400
=   

Time is a continuous variable and sample number is a discrete variable.  This 
discrepancy may cause some problems when the MTBF is “small.”  In the example being 
presented, MTBF = 100, so that the probability t =1 is 1%, since R = e-1/100 = 0.99 is the 
probability of not failing, so that the probability of a positive sample is 1-0.99 = 0.01.  The 
implication of this is that two consecutive positive samples, providing an observation of t = 
1, is not enough to signal “out of control” if the control limits are set where the α-
probability is to be low, about 0.135%, based on the normal distribution assumption for the 
Shewhart (one-sided) control limit of μ + 3σ.  In order to have a α-probability that low or 
lower, the MTBF must be no less than 750 samples.  

 
There are many ways this “problem” can be dealt with.  The easiest is just to count 

the number of samples between positive results, exclusively, so that the above example 
would provide an observation of t = 0, (two consecutive events would mean no negative 
results between events), and thus would automatically (regardless of the value of MTBF) 
provide an “out of control” signal.  This is a “conservative” approach insofar as it assigns 
the number of days the minimum it could be assuming that time was a continuous variable 
and what is being measured is that time when a “failure” takes place.  In practice this 
should not create a serious bias in the α- and β-probabilities, but has the effect of increasing 
the α-probability slightly while decreasing the β-probability slightly over actual values. 
Thus, the time, t in the above formula is, (t), equal to number of samples since last positive 
-1.  
 
 Steps required to develop an effective F Charts are: 
 

1. Define the event of interest……….Positive finding of  E. coli 0157:H7 
2. Calculate the MTBF …………….. From last 20- 30 events 
3. After an event determine the time or number of samples since the last event. 
4. Determine t, by subtracting 1 from the answer in 3. 

(or combining 3 and 4, determine the number of samples between positive 
events , exclusive of the positive samples) 

5. Determine the ‘probability’, R, of having not failed, using t, computed in 4. 
6. Plot this probability of having not failed. 
7. Connect the plotted point to the previously plotted point. 
8. Review the chart for out of control signals after each point. 

 
 
 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 33 of 36 

 

Note that the MTBF is not directly placed on the F-Chart, rather the F-chart is 
scaled from zero to 100% with limits set at a probability equal to those historically set 
by Shewhart at 0.13% and 99.87%.  These probabilities correspond closely to the upper 
and lower control limits set at μ +  3σ for the usual Shewhart control chart, discussed 
above.  The target line corresponding to the mean is at 50% (labeled F~ ).  When the 
times between events are distributed as an exponential distribution, the probabilities, R, 
will be distributed as a uniform distribution between 0 and 1, and thus the data points, 
R, would be randomly distributed around the center line (0.5) rather than being 
distributed non- symmetrically as would be the case if the times themselves were 
plotted.  Thus R could be used for constructing moving averages, CUSUMS, or other 
trend statistics, keeping in mind though that the underlying assumption is a uniform 
distribution rather than a normal distribution. 

 
After each event, the time since the last event or number of samples since the last 

event are placed in the space labeled, Time Since Last Failure - 1 (t), and the 
probability of not having a failure is calculated and entered in the space labeled 
Probability of not Having a Failure ( R ). An F Chart with a MTBF of 100 may look 
like that illustrated in Figure 1. 
 

 
 
Figure 1. An F Chart of E. coli 0157:H7 events for a process with a MTBF of 100 
samples 
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For this example, with a MTBF of 100 samples, the first event on this chart occurred after 
202 samples (actually the 203rd sample). This corresponds to a probability of not having a 
failure of 0.1327 because  

R = MTBF
t

e
−

= 100
202−

e =0.1327. 
 

Stated another way the process had about an 87% chance of having an event before 
it did. In setting the chart up in this manner, it allows one to look at the graph of events in a 
similar fashion that one would look at a single attribute, such as, the NP chart discussed in 
Appendix 4. For example, eight consecutive points below F~ (Figure 2) would indicate an 
increase in MTBF and eight consecutive points above F~ (Figure 3) would indicate the 
MTBF is decreasing. Other indicators that the MTBF is increasing or decreasing would be 
a single point below the LCLF or a single point above the UCLF, respectively. Figure 4 
illustrates a process with a point below the LCLF.  (Note, as discussed above, that because 
the MTBF is only 100, for a point to exceed the UCLF requires two consecutive positive 
samples, or zero samples between failures.)    

 
Of course, as with all SPC charts, an out of control signal should be investigated.  

An investigation of points above the UCLF or eight consecutive points above F~  = 0.5 
would help one identify processing conditions which raise the probability of an event. 
Removal of the conditions which raise the probability of an event could lower the 
probability of the event. This would in turn cause an increase in the MTBF, resulting in 
either a point below the LCLF or eight consecutive points below F~ .  

 
Figure 2. An F Chart showing an increase in the MTBF 
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Figure 3. An F Chart showing a decrease in the MTBF 
 

 
Figure 4. An F Chart showing a point below the LCLF, indicating the MTBF may be 
increasing 
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1 Almost any microbiological data set of counts will have a distribution that is skewed so that a log 
transformation would make the distribution more symmetric.  See for example the USDA Food Safety 
Inspection microbiological baseline surveys for counts of generic E. coli and other organisms.  In fact this 
seems to be mostly true for any population data of living things.  Part of the reason might be due to the 
inherent randomness associated with growth or cell division that “pure living” systems exhibit – namely an 
exponential growth.    
2 American Society for Testing Materials, from ASTM Manual on Quality Control of Materials, Philadelphia, 
January 1951, p. 115. 
3Discussion of maximum likelihood estimation, and maximum likelihood ratio and chi-square statistics can be 
found, in:  Kendall and Stuart’s The advanced theory of statistics, vol. 2. Charles Grifffen and Company 
Limited, London. 
4 SAS, SAS Institute Inc. , Cary NC.   
5 Wheeler, Donald J. and Chambers, David S. 1992 “Understanding Statistical Process Control. 2nd edition.” 
SPC Press, Inc. 
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AOAC INTERNATIONAL 
Presidential Task Force on 

Best Practices for Microbiological Methodology 
US FDA Contract #223-01-2464, Modification #12 

 
Executive Summary 

Statistics Working Group 
 
 
Objective: The objective of the STWG has been to review current practices and 
alternative approaches for validation of microbiological test methods (including 
growth-related and chemical tests), and make recommendations based on the past 
experiences and ongoing activities of the group members.  This was to include 
statistical methods for analyzing data from validation studies. At the outset of this 
project it was acknowledged by the BPMM Steering Committee and by the STWG 
that the project provided neither the time nor the resources to fully validate all the 
recommendations of the group.  Some recommendations, such as the use of LOD50 for 
qualitative methods, may require further development, before being widely used. 
 
Determining method performance: Performance standards should be based on 
criteria based on fitness for the intended use, including public health needs.  In 
general, statistical methods should be used to assist in setting realistic performance 
standards.  These methods should be based on control of Type I and Type II error, 
which implies the determination of levels of unsatisfactory performance that must be 
detected (with stated probability) and controlled.  It also implies use of appropriately 
determined sample sizes to meet the stated goals relative to stated α and ß.  This 
approach would be a change from current practices in which studies are accepted on 
the basis of standard designs for number of laboratories, materials, and replicates, and 
standard criteria for suitability of the summary statistics. The design specifications 
and resulting reliability estimates should form the basis of applicability statements for 
test and measurement methods. (Ref 1, 9, 10, 13, 14) (Task 2: What are the 
scientific/statistical bases for developing performance standards against which the 
validation of methods should be based?). 
  
The committee supports the use of appropriate international consensus standards.  For 
consensus standards that are currently under development, the STWG recommends 
active participation in the development and/or validation of the standards.  In general, 
the STWG acknowledges the value of rigorous consensus processes and international 
harmonization of method validation procedures.  Specific approved international 
consensus standards include the following: 

 
a) ISO 16140 Microbiology of food and animal feeding stuffs – Protocol for the 

validation of alternative methods 
b) ISO 5725 Series: Accuracy (trueness and precision) of measurement methods 

and results. 
c) ISO 11843 Series: Capability of Detection 
d) CLSI/NCCLS EP17-A: Limits of Detection and Limits and Quantitation for 

Quantitative Measurement Procedures. 
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Standards under development include ISO draft Technical Specification 19036: 
Microbiology of food and animal feeding stuffs – Guide on estimation of 
measurement uncertainty for quantitative determinations. 
 
Statistical procedures recommended in ISO 16140 are appropriate for “alternative 
methods” where there is an accepted reference method, but many of the procedures 
can also be used where there is no reference method.  This document recommends use 
of robust statistical procedures that do not necessarily assume a normal distribution 
and are not so severely affected by extremely large or small outlier results that can be 
misleading with more conventional procedures.  It also recommends against the 
removal of outliers from collaborative studies, except for assignable causes.  The 
STWG fully agrees with these recommendations. 
 
The committee strongly urges caution in applying the concept of “false negative” and 
“false positive” results because of the difficulty of confirming all positives and 
negatives, and the likelihood of misinterpretation.  Alternative confirmation 
procedures should be considered, such as nucleic acid testing.  Any estimates of 
“sensitivity” for low level samples should be corrected using appropriate statistical 
methods, such as adjustments for expected true negatives predicted with the Poisson 
distribution.  Protocols should continue to include the appropriate Chi Square test 
based on whether or not samples are paired.  (Ref 1-5, 14) (Task 10. What are the 
appropriate statistical tools to be used for interpretation of validation studies?) 
 
Predictor and response variables important to the study design as well as for 
validating methods must be discussed and accepted by all subcommittees and the 
Steering Committee after review of all reports.  Initial considerations should include 
variables that have been identified in the reports from other task groups.  (Ref 15) 
(Task 11: What are the test variables (e.g., number of strains, foods, inoculum levels) 
that should be considered for each of the factors listed in Task 8?) 
 
Estimating uncertainty:  Uncertainty in measurements using quantitative procedures 
is best estimated following an all-inclusive, or “top down” approach.  This approach 
does not attempt to estimate all components of uncertainty separately and it does not 
require a detailed mathematical model of how those components are combined.  This 
approach is in contrast to a “bottom up” approach, which provides an estimate of the 
uncertainty of the method rather than the measurement and requires estimation and 
combination of variances at all stages of an analysis.  This cannot be done routinely, 
however, so standard, or assumed, variances are used which aligns the combined 
estimate to the basic method rather than the analytical result.  The “bottom up” 
approach is likely to underestimate uncertainty due to sources of uncertainty that are 
not considered.  By contrast, the “top down” approach makes no attempt to set generic 
estimates of uncertainty for specific test methods and rightly aligns the estimate of 
measurement uncertainty with a specific analysis (or set of analyses).  The “top 
down” approach is consistent with the Guide to the Expression of Uncertainty in 
Measurement (GUM) principles that allow combination of sources of uncertainty that 
are difficult to estimate individually.  Comprehensive estimates of uncertainty can be 
obtained from collaborative studies, from carefully designed validation studies, or in 
some cases from routine quality monitoring data. 
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For qualitative methods, measurement uncertainty for the result cannot be expressed 
directly – instead, the measurement uncertainty relates to the probability of reporting 
an incorrect result.  This can be estimated with false negative and false positive rates, 
for those methods with confirmation procedures (Ref 7).  For some measurement 
procedures, uncertainty can be expressed as the standard error of a limit value 
estimation e.g. the LOD50, as estimated by the Spearman-Karber or some alternative 
method (Ref 11,15,16).  This procedure estimates uncertainty where it is most 
important, which is at the border of the determination of “present” or “absent” (that is, 
in the area of the detection limit). The work of ISO Technical Committee 34, 
Subcommittee 9 is not yet completed, so the STWG recommends active participation 
in the efforts of this subcommittee. (Ref  5) (Task 6. What are the effective means for 
articulating the uncertainty associated with microbiological methods?) 
 
Limit of Detection: The detection limit for qualitative tests is best described as the 
“LOD50”, or number of organisms per gram of sample at which 50% of the tests are 
positive.  This is determined with a nonparametric (distribution free) version of probit 
analysis, and an experimental study using at least 4 dilutions in which at least two of 
the dilutions have “fractional positives” in order to better estimate the LOD50 and 
perhaps allow for estimates of other percentiles, such as the LOD90 (number of 
organisms per gram of sample where 90% of results are positive).This procedure also 
assumes that one  dilution level has 0% positive results and one dilution level has 
nearly 100% positive results (allowing for measurement error in the test laboratories).  
(Ref 12,13, 17, 18). 
 
For quantitative methods, the committee recommends use of the ISO 16140 
procedure, which presents limits of detection and quantification as functions of the 
variability of blank (or very low) samples.  The committee recognizes, however, that 
alternative procedures exist that should be investigated, such as the ISO 11843 Series 
on capability of detection, or the nonparametric analog of that procedure, as described 
in the CLSI document EP17-A on Limits of Detection and Quantitation.  These 
procedures recognize the importance of Type I and Type II errors, and that variances 
of signals from truly negative and truly positive samples can be different (Ref 1, 3, 4).  
There are related strategies for designing experiments to use the ISO/CLSI approach 
(Task 4:  What are scientific/statistical bases for determining the lower limit of 
detection for microbiological methods?  How is the lower limit of detection validated 
during the validation of a method?  How is the relative performance of a method 
determined as the lower limit of detection is approached and what is the best way of 
characterizing this performance?) 
 
 
Topics for further research 
In the course of this review, the STWG identified several areas where further research 
was needed, or a more comprehensive review of the documents developed for this 
study.  The areas of further review include the following (Ref 19): 
 

1. Further development of procedures for describing the Limit of Detection for 
quantitative methods. 

2. Further development of recommendations for use of the generalized 
Spearman-Karber method for estimating the LOD50 for qualitative methods. 
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3. Evaluation of alternative approaches to the Spearman-Karber method e.g. 

Logit, Probit and other statistical procedures currently under investigation by 
the ISO TC34/SC9/SWG. 

4. Investigation of the effectiveness of current AOAC Official Methods for 
Single Laboratory Validation (SLV) procedures, Multiple laboratory 
Validation procedures (MLV) and harmonized Collaborative Validation 
studies (HCV), relative to the recommendations concerning the design of 
verification studies. 

5. Use of existing AOAC study data to evaluate the alternative statistical 
methods proposed. 

6. Use of existing AOAC data for assisting in design issues for future validation 
studies.   This could include proper consideration of Type II error in addition 
to Type I error, and should develop a structured approach for making decisions 
based on the data. 
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Developing standards and validating performance: 

scientific/statistical bases for describing the validation of 
performance. 

 
I. Principles: 
 

1.  Performance standards should be based on appropriate statistics for describing 
method performance and expert/regulatory objectives for the intended use.  
Performance statistics might vary for different measurement technologies, 
although attempts should be made to harmonize these.  Minimal performance 
criteria could be different for every performance statistic and for every use.  

 
2. The performance characteristics should be estimated with experimental 

protocols to assure that confidence intervals for the statistics will be small 
enough for their intended use (this controls Type I error and Type II error).  

 
3. All performance characteristics should be specific for a defined organism or 

strain of particular interest.  That is, the “measurand” (or “analyte” in common 
usage) should be defined exactly; sometimes this might include a single strain, 
sometimes a class of strains, a genus, or a group of organisms.  Similarly, the 
measurand might be a specific microbial toxin, a group of toxins, or some 
other parameter.   With a carefully described measurand, the concepts of 
“inclusivity” and “exclusivity” are variants of “sensitivity” and “specificity”.   
These statistics are useful for general descriptions of a method that is approved 
for a microorganism with many important strains. 

 
4.  Results from experiments in a single laboratory can be useful for the design of 

collaborative studies, but should not be used alone to establish claims for 
method performance (except for the particular laboratory’s own purposes).  
Performance characteristics should be estimated, wherever possible, with 
experiments conducted in two or more laboratories that have demonstrated 
competence with this type of microbiological procedure and experimental 
protocol.  At least one of the laboratories must be independent of the 
manufacturer/developer of the method.  It is acceptable to validate 
performance of a method in a single laboratory and have a second laboratory 
verify the performance on a carefully selected subset of matrices, but this 
needs to be done with care, and following the recommendations from the 
BPMM Matrix Extension Recommendations or ISO 16140.  Therefore 
determinations of bias between an alternative and reference method cannot be 
determined in a single laboratory, nor can inclusivity or exclusivity (sensitivity 
and specificity), unless the determinations are verified in at least one other 
laboratory.   

 
5.  It is essential to differentiate between the uncertainty (sic lack of precision) of 

a method and the uncertainty of an estimated value derived using that method 
(sic the measurement uncertainty). Estimates of measurement uncertainty 
should be derived from appropriate “top down” procedures using intra- or 
inter-laboratory randomized trials; in some instances, such estimates may be 
specific to each individual laboratory undertaking a specific test.  By contrast, 
uncertainty estimates for the method are derived by “bottom up” procedures 
and must be used with care since they normally underestimate the true extent 
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of uncertainty of a measurement. Upper limits for uncertainty estimates may 
be used by those laboratories that can demonstrate competence with the 
method. 

 
II. Considerations for Statistics and Statistical Methods 

 
1. The statistics used should possess the following qualities: 

• Unbiased, maximum likelihood estimates for the performance characteristics 
of interest. 

• Appropriate for the distribution of data from which they will be calculated. 
• Understandable and intuitive for microbiologists and regulators. 
• Sensitive to the most common sources of error or deviation from expected 

performance. 
 
2. Criteria for the suitability of the performance statistics should be based on the 

following considerations: 
• Professional judgment on the performance level required for the method for 

the intended use.  This should be based on considerations for public health or 
fitness for purpose, and technical knowledge of the method.  

• There should be definitions of performance that is not suitable for a prescribed 
purpose; that is, poor performance that should be detected with high 
probability. 

• Probability of improperly rejecting a method as unsuitable, when in fact it is 
suitable for the intended use (control of Type I error). 

• Probability of improperly accepting a method as suitable, when in fact it is not 
suitable for the intended use (control for Type II error). 

 
3. The data used to characterize performance should be based on the following: 

• Data from more than one laboratory. 
• Statistics based on all results received from competent laboratories, all 

following the same well-defined instructions for the measurement procedure 
and reports (discard only those data outliers for which there is a known cause).  

• Data transformed to reasonable normality and analyzed using appropriate 
robust or nonparametric methods. Severe non-normality of the transformed 
data (many statistical outliers) or evidence of bimodality should be resolved 
prior to analysis of the data. 

 
III. Considerations for calculating performance statistics from collaborative 
studies. 
 
Carefully designed collaborative studies are preferred for describing the performance 
capabilities of a measurement procedure.  The guidelines for determining the 
numbers of laboratories, levels, and replicates are well established (see for instance 
McClure & Lee, 2005).  Procedures for analysis of the data are less well established.   

 
1. Before summary statistics are generated, it is important to look first for 

laboratories that seemed to have difficulties with more than one sample, or 
whose results are consistently high, low, or highly variable across levels.  
These are the laboratories that were possibly affected by ambiguous 
instructions, a missing step in the procedure, or other inherent weakness in the 
measurement procedure.  These situations must be investigated before data 
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analysis proceeds.  Any truly erroneous results must be eliminated - or in some 
cases they can be corrected (as in decimal point errors or switched samples).  
No results should ever be eliminated for purely statistical reasons.  If reasons 
cannot be found, then the variability is assumed to be representative of the 
procedure.  Obvious any bimodality in the data must also be resolved, possibly 
using ‘bump hunting’ procedures.  Once the truly erroneous results are 
eliminated then the statistical processing can commence.  
  

2. ISO 16140 recommends use of robust statistical procedures rather than 
conventional parametric statistical techniques, and the BPMM STWG agrees 
with this recommendation.  However, whether extreme results are eliminated 
as outliers or have their impact limited with robust techniques is less important 
than the analyst’s investigation of how such outlying results occurred.   
 

3. For qualitative method comparison studies, the definition of the “Reference 
Method” is important for naming the performance statistic.   If the Reference 
Method is definitive for confirming the presence and absence of an organism, 
then it is possible to use “false positive” and “false negative” as summary 
measures for an alternative method.  Similarly, if definitive confirmation 
techniques are available then “false positive” and “false negative” for an 
alternative method may be reported.  However if the Reference Method is not 
definitive, then performance measures are relative to the Reference Method 
and must be described as “relative sensitivity” and “relative specificity”.    
  

4. McNemar’s Chi-Square test is appropriate for testing for significant 
disagreement between Reference and Alternative Methods, but is appropriate 
only when samples are truly pairs – that is when they share a common 
enrichment or pre-enrichment step.  Artificially linked samples are not 
appropriate for McNemar’s test.                              
 

5.  The term “false negative” (FN) is a confusing concept, even when using only 
confirmed positives.  When there are few organisms in the sample, the FN rate 
may be a combination of results where an organism was present but not 
detected and results from samples that truly contained none of the target 
organisms, due to inhomogeneous distribution of organisms in the larger 
sample.  It is possible using the Poisson distribution (or if appropriate the 
Binomial or Negative Binomial distribution), to adjust the false negative rate 
to account for the estimated number of true negatives.  Therefore, even when 
only confirmed positives are used, false negative rates should be adjusted for 
the theoretical likelihood of having a true negative.                              
 

6. The LOD50 is an independent descriptor of performance, and is preferred to 
measures that are relative to the Reference method (such as false negative or 
false positive).                                               . 
 

7. If possible, all samples should have their positive/negative status confirmed by 
an independent methodology (except for those samples that are positive by 
both the reference and alternative methods).  Samples that are negative by both 
methods should also be confirmed by independent methodology, if possible. 
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IV. Recommended performance statistics 

  
Qualitative Methods 

1. Number of cfu per gram of matrix for 50% probability of a positive signal 
(LOD50) 

2. Number of cfu per gram of matrix for 90% probability of a positive signal 
(LOD90) 

3. Probability of a negative signal when the Reference Method indicates no 
organisms is present (relative specificity). 

4. Probability of a negative signal when common contaminants, but not the target 
organism, are added to a sterile sample (specificity). 

5. Probability of a positive signal when the Reference Method indicates 
organisms are present (relative sensitivity). 

6. Proportion of replicates with same result (repeatability) 
7. Proportion of results from different laboratories with the same correct result 

(reproducibility). 
8. Standard Error of the LOD50, for use in estimating the effect of measurement 

uncertainty on the probability of obtaining an incorrect result. 
 
Quantitative Methods 

1. Difference between replicate samples obtained under repeatability conditions 
(intra-laboratory repeatability).   

2. Difference between replicates from the same material in the same laboratory, 
using changed conditions (intermediate reproducibility). 

3. Difference between average results from different laboratories, testing the 
same material (reproducibility). 

4. Average difference between the Alternative Method and the Reference 
Method pooled across multiple competent laboratories (relative method bias). 

5. The extent to which the measurement signal is proportional to the number of 
organisms in the sample (linearity).   

6. Range of quantification: the lowest and highest signals that can be detected 
with adequate uncertainty, obtained by dilution.  For plate count methods, this 
is the range of counts per plate where results can be obtained with a stated 
degree of repeatability precision.  

7. Lowest level where results can be obtained with a stated uncertainty that is fit 
for its purpose (limit of quantitation). 
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STWG Objective #11 – Variables 
 
 
 

1. Number of strains 
 For qualitative studies with pathogens, it depends on the organism.  It has been 

AOAC practice to require “inclusivity” testing of at least 50 target strains in 
pure culture and “exclusivity” of at least 30 non-target strains in pure culture.  
The collection of target strains should be representative of the breadth of the 
target group in terms of genetic or serological types.  Non-target strains should 
represent those most closely related to the target group biochemically, 
serologically, or genetically, e.g., other members of the Enterobacteriaceae for 
the case of Salmonella spp. as a target.  Target strains are to be cultured under 
the enrichment conditions specified for the test (selective enrichment if this is 
part of the procedure).  Non-target strains are cultured under non-selective 
conditions to present a worst-case scenario.  

 
 For inoculation of food samples, a different target strain is used for each food 

type.  In the early years, there was an attempt to pair foods and strains based 
on historical illness outbreak or product recall data (e.g., Salmonella 
Enteritidis in eggs).   

 
These issues will be addressed by the BPMM Task Force as proposed 
guidelines are drafted. 

 
2. Number of foods 

Historically, for Salmonella, normally 20 foods tested in a pre-collaborative 
study (or AOAC PTM study) plus 6 foods in a collaborative are viewed as 
sufficient to support claims for “all foods”.  Some within the AOAC review 
community are becoming uncomfortable with this, since it has been found 
subsequently that some methods approved for all foods have been shown to be 
ineffective for certain foods not tested in their validation studies.  There has 
been talk of limiting approval claims to those foods actually tested.  Restricted 
approvals are less helpful to the end user of the test, but obviously more 
accurately indicative of what is known about the test capabilities.   It might be 
better to warn users that the procedure has been tested only in certain 
circumstances and users should be required to advise AOAC of genuine false 
negative or false positive findings obtained in subsequent investigations; this 
should then lead to the issue of an administrative warning concerning use of 
the procedure in such circumstances. 

 
 The approach to Listeria has been a bit different.  Normally 15 foods are 

tested, and claims are issued for product groups – meats and poultry, seafoods, 
dairy products, fruits and vegetables, environmental samples, etc. 

 
 For E. coli O157:H7, the list of foods of interest is much narrower, generally 

limited to raw beef and perhaps sprouts and freshly pressed apple juice. 
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The BPMM task force does not prescribe a specific number of foods, but tends 
toward allowing the method developer to make a claim based only on those 
foods successfully validated.  The Matrix Extension group has developed new 
food categorization schemes with associated rules for matrix extension (see 
Appendix B). 

 
3. Inoculation levels 
 The current AOAC requirement is for at least one level with 20 replicates 

where the results produce “fractional positives”, i.e., less than 20 are positive 
by at least one of the methods (test or reference).  This is taken as evidence 
that the majority of test samples contain not more than 1 cfu per 25 grams.  In 
order to produce this result, analyst inoculates at ~ 1 cfu per 25 grams of 
product, sometimes higher if inoculum die-off is expected.  The actual 
inoculation levels are estimated by an MPN determination.  There is also a 
requirement for at least 5 uninoculated control samples.  Normally, analysts 
prepare 2 levels of inoculation in the hope that at least one of the levels will 
produce fractional positives.  The BPMM Statistics working group 
recommends that 4 levels of inoculation be used in estimating the LOD50: two 
levels with fractional recovery, one level all or nearly all positive and one 
level all or nearly all negative.   

 
4. Choice of reference method 
 Currently, in AOAC Official MethodsSM pathogen test studies, the FDA BAM 

(Bacteriological Analytical Manual, available on-line), USDA MLG 
(Microbiological Laboratory Guidebook, available on-line) or appropriate 
AOAC Official Method of AnalysisSM method is used as the reference 
procedure.  In AOAC Research Institute Performance Tested MethodsSM 
validations, other recognized official methods can be used, such as ISO or 
Health Canada.  All of these are standard microbiological culture methods.   
Depending on the choice of reference method, the alternative method could 
compare differently. While the BPMM task force has not recommended any 
change in the choice of reference method, it does offer validation methods 
appropriate for cases in which no reference method is available.  When a 
reference method is available, it will be included in the validation study and its 
performance will be evaluated alongside the alternative method. 

 
5. Manufacturer of culture media 
 Typically, the culture media used in a validation study is stated in the 

validation study report.  However, the media source is generally not specified 
in terms of the method approval, i.e., there is a general doctrine of 
equivalence.  This is a tough problem, because we know that there are 
differences in media performance from manufacturer-to-manufacturer and also 
lot-to-lot, which cannot be controlled.  It is appropriate to note in the published 
AOAC method that medium from Manufacturer X was used in the validation 
procedure (which cover several batches of that medium) and that any 
laboratory which intends to use the procedure with media from other 
manufacturers must first check the alternative medium against that from 
Manufacturer X. 
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6. Manufacturer of reagents 
 AOAC Official Methods of Analysis are supposed to be described in a generic 

way.  So, in theory, someone could copy the method described for a 
commercial kit and claim that the copy is an AOAC method.  This situation 
has not arisen, though.  There usually is not enough information given about 
critical reagents such as DNA probes or antibodies to allow someone to easily 
replicate a method.  AOAC Research Institute PTM approvals are specific to 
the individual commercial kit and annual reviews ensure that if reagent 
sources change, that a method modification study is performed to demonstrate 
equivalence. 

 
7. Physical state of the cells 
 In the ideal case, validation studies would only use naturally contaminated 

samples.  However, these are rarely available, especially low-moisture foods 
contaminated with Salmonella.  So, in the inoculated studies, the analyst 
stresses the inoculum and mixes it into the matrix so as to simulate conditions 
of natural contamination.  For low-moisture foods, the model is to use a 
lyophilized cell pellet as the inoculum, mix it into the food, and allow the food 
to sit for 14 days to “stabilize”.  An MPN determination is then done to 
estimate the contamination level.  For frozen foods, the food is thawed, 
inoculated with a culture dilution, and then re-frozen for 3 days before testing.  
In some cases, models of heat or preservative injury might be appropriate.  For 
high-moisture refrigerated foods (e.g., raw or cooked chicken), the food is 
inoculated with a culture dilution and then refrigerated for 3 days before 
testing.  There may be little or no injury in this case, but the thinking is that 
this realistically simulates the natural state of pathogen contamination of this 
type of product.  No change to these procedures is currently recommended by 
the BPMM task force. 

  
8.  Phenotype vs. genotype  

Differences between molecular-based methods and immunological methods 
must be taken into consideration in method development and the design of 
validation studies.  While molecular methods do not require expression of 
protein products, immunological methods must ensure that expression occurs 
at sufficient levels for detection to occur.  Factors such as matrix, enrichment 
media, and enrichment temperature can potentially influence protein 
expression. 

 
9.  Sporulation 
 No comments 
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Uncertainty Associated with Microbiological Analysis 
 

 
1. Introduction 
1.1. There are only two absolute certainties in life: death and taxes!   Whatever task we 

undertake, no matter how menial or how sophisticated, we are faced with a lack of 
certainty in the outcome!   It is therefore essential to have a common understanding 
of what is meant by uncertainty in relation to our specific tasks in defining BPMM. 

1.2. In microbiological laboratory practice, we can identify many causes of variability, 
for instance: 

1.2.1. The ability of an isolate to give typical reactions on a diagnostic medium;  

1.2.2. The use of the incorrect ingredients in a culture medium;  

1.2.3. The consequence of changing brands of commercial media;   

1.2.4. Use of non-standard conditions in the preparation, sterilisation and use of a 
culture medium; 

1.2.5. Equipment and human errors in weighing, dispensing, pipetting and other 
laboratory activities; 

1.2.6. The tolerance applied to the shelf life of test reagents;  

1.2.7. The relative skill levels of different technicians;    

1.2.8. The relative well-being of any technician who is undertaking analyses; 

1.2.9.  and so on, and so on …. ad infinitum! 

1.3. These are but a few trite examples of biological, instrumental and personal bias that 
affect the accuracy, precision and hence the uncertainty of microbiological tests; a 
situation that constantly faces scientists involved in laboratory management.   

1.4. To interpret properly the results obtained using any analytical procedure, whether 
physical, chemical or biological, requires careful consideration of the diverse 
sources of actual or potential error associated with the results obtained.   Any 
analytical result is influenced by a complex of three major error groups:  

1.4.1. Random errors, associated with the original sample matrix, the analytical 
(test) sample, the culture media, etc;  

1.4.2. Inherent systematic errors associated with the analytical procedure; and  

1.4.3. Modification of the systematic errors due to a particular laboratory’s 
environment and equipment together with individual analysts’ personal traits 
in carrying out the test procedure. 
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1.5. Accuracy and Precision 
1.5.1. Accuracy is a qualitative concept (VIM, 1993). In simple terms, accuracy 

can be defined as the correctness of a result, relative to an expected 
outcome; whilst precision is a measure of the variability of test results. 

1.5.2. Accuracy is defined (ISO3534-2:2003) as "the closeness of agreement 
between a test result or a measurement result and the true value."  Accuracy 
is a combination of trueness and precision (a combination of random 
components and systematic error or bias components). This differs from the 
definition given by VIM (1993): "the closeness of agreement between the 
result of a measurement and a true value of a measurand".   

1.5.3. “Accuracy” is essentially “absence of error”; the more accurate a result the 
lower the associated error of the test.   It is important to note that the term 
“accuracy “ applies only to results and can not be applied to methods, 
equipment, laboratories or other general matters. 

1.5.4. “Trueness” is defined (ISO, 2003) as, “the closeness of agreement between 
the average value obtained from a large series of test results and an accepted 
reference value”. 

1.5.5. Trueness is equivalent to an absence of “bias”, which is the difference 
between the expectation of the test results and an accepted reference value 
and is a measure of total systematic, but not random, error. 

1.5.6. Trueness, unlike accuracy, may correctly be contrasted with precision. 

1.6. “Precision” is defined as the closeness of agreement between independent test 
results obtained under stipulated conditions.  

1.6.1. Precision depends only on the distribution of random errors and does not 
relate to a true value or a specified value.  

1.6.2. The measure of precision is expressed usually in terms of imprecision and 
computed as a standard deviation of the test results.  

1.6.3. Lower precision is reflected by a larger standard deviation.  

1.6.4. Independent test results means results obtained in a manner not influenced 
by any previous results on the same or similar test object.  

1.6.5. Quantitative measures of precision depend critically on the stipulated 
conditions. Repeatability and reproducibility conditions are particular sets of 
extreme stipulated conditions (ISO 3534: 3.14). 

1.7. Fig 1 illustrates schematically the relationships between trueness, accuracy, 
precision and uncertainty (AMC, 2003).   
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Fig 1.  Relationships between trueness, accuracy, precision and uncertainty in analytical 
results (AMC, 2003). (Reproduced by permission of the Royal Society of Chemistry, 
London) 
 

1.8. The concepts of accuracy and trueness must take account of error and precision.   
Uncertainty estimates (qv) provide a simple way to quantify such needs.   However, 
since in a real-life situation we never know what the “true” or “correct” answer is, 
trueness can be assessed only in a validation-type trial against an accepted reference 
value.  This is much more complex in microbiology than it is in physics, and 
chemistry. 
 

2. Uncertainty of Measurement  
2.1. The ISO/Eurachem (2000) definition of Uncertainty of a Measurement is  

2.2. “A parameter associated with the result of a measurement that characterises the 
dispersion of the values that could reasonably be attributed to the measurand”. The 
term “measurand” is a bureaucratic way of saying “analyte”. 

2.3. Translated into simple English this definition can be rewritten, as “Uncertainty is a 
measure of the likely range of values that is indicated by an analytical result.”  

2.4. For quantitative data (e.g. colony counts, MPNs or LOD50 values) a measure of 
uncertainty may be any appropriate statistical parameter associated with the test 
result.  Such parameters include the standard deviation, the standard error of the 
mean or a confidence interval around that mean. 

2.5. Measures of repeatability and reproducibility are the corner stones of estimation of 
analytical uncertainty.  They are defined (ISO 2004) as: 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



Appendix J – STWG Part 3 – Uncertainty 8-8-06 
Page 4 of 31 

 

2.5.1. Repeatability is “a measure of variability derived under specified repeatability 
conditions”, i.e. independent test results are obtained with the same method 
on identical test items in the same laboratory by the same analyst using the 
same equipment, batch of culture media and diluents, and tested within short 
intervals of time. 

2.5.2. Reproducibility is “a measure of precision derived under reproducibility 
conditions” i.e. test results are obtained with the same method on identical 
test items in different laboratories with different operators using different 
equipment.   A valid statement of reproducibility requires specification of the 
conditions used. 

2.5.3. Intermediate Reproducibility (ISO 5725-2:1994  ) is defined as “a measure 
of reproducibility derived under reproducibility conditions within a single 
laboratory”. 

2.5.4. Standard Uncertainty of a measurement (u(y)) is defined (GUM, 2000) as 
“the result obtained from the values of a number of other quantities, equal to 
the positive square root of a sum of terms, the terms being the variances or 
covariances of these other quantities weighted according to how the 
measurement result varies with changes in these quantities” 

2.5.5. Expanded Uncertainty (U) is defined as “the quantity defining an interval 
about a result of a measurement expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand”.   

2.5.6. The “Expanded Uncertainty” values are derived by multiplying the SD’s with 
a “coverage factor” to provide confidence intervals for repeatability and 
reproducibility around the mean value.  Routinely, a coverage factor of 2 is 
used to give approximate 95% distribution limits (confidence interval) around 
the “normalised” mean value. 

2.6. For qualitative data (e.g. presence or absence tests) uncertainty measures cannot be 
derived in the same way.  However, other procedures e.g. use of the standard error 
associated with derived values for e.g. LOD50 (qv) and by binomial analysis of the 
relative proportions of positive and negative results in a comparative evaluation of 
methods (see 3.4 below).   

3. How is uncertainty estimated? 
3.1. There are two totally different approaches to the estimation of uncertainty:  

3.1.1. The “bottom up” approach in which the errors associated with all the relevant 
steps undertaken during an analysis are used to derive a value for the 
“combined standard uncertainty” associated with a method (Eurachem 2000; 
Niemelä, 2002). Essentially this approach provides a broad indication of the 
possible level of uncertainty associated with method rather than a 
measurement; ISO TC34 SC9 considers the approach always to under-
estimate the extent of variation since it cannot take into account either matrix-
associated errors or the actual day-to-day variation seen in a laboratory.  For 
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these reasons, ISO has recommended that this approach is not appropriate for 
microbiological analyses. 

3.1.2. The “top-down” approach is based on statistical analysis of data generated in 
intra- or inter-laboratory collaborative studies on the use of a method to 
analyze a diversity of matrixes.   It therefore provides an estimate of the 
uncertainty of a measurement associated with the use of a specific method.  

3.1.3. Statistical aspects of the procedures, together with worked examples, for both 
approaches are summarised in Annexes I & II. 

3.1.4. A review of measurement uncertainty in quantitative microbiological analysis 
is currently in press (Corry et al, 2006). 

3.2. Quantitative Tests.  For quantitative data (e.g. colony counts and MPN estimates), 
measures of “repeatability” and “reproducibility” are derived as the standard 
deviations of repeatability (sr) and reproducibility (sR).  However… 

3.2.1. Microbiological data do not normally conform to a “normal” distribution, and 
usually require mathematical transformation prior to statistical analysis.  For 
most purposes, a log10 transformation is used to “normalise” the data but in 
cases of significant over-dispersion the use of a negative-binomial 
transformation may be necessary (Jarvis, 1989; Niemelä, 2002).  If there is 
reason to believe that data conform to a Poisson distribution, then a square 
root transformation is required, since the variance (σ2) is numerically equal to 
the mean (m) value. 

3.2.2. Statistical analyses of collaborative trial data are generally done by Analysis 
of Variance (ANOVA) after removing any outlying values, as described by 
Youden & Steiner (1975) and by Horwitz (1995).  However, it has been 
argued (e.g. AMC 1989, 2001) that it is wrong to eliminate outlier data and 
that application of Robust Methods of analysis is preferable. 

3.2.3. One approach to robust analysis is a “robusticised” ANOVA procedure based 
on Huber’s H15 estimators for the robust mean and standard deviation of the 
data  (AMC, 1989, AMC 2001, ISO 5725-5:1998).   

3.2.4. An alternative approach is that of the Recursive Median (REMEDIAN) 
procedure (ISO 2000; Wilrich, 2005).   

3.2.5. Worked examples of traditional and robust analyses are shown in Annexe III.  

3.2.6. A major drawback to use of these robust techniques for inter-laboratory trials 
is that they do not permit the derivation of Components of Variance.   A novel 
approach to overcome this disadvantage is by the use of stepwise robust 
analysis for “nested” trial data, as described by Hedges & Jarvis (2006). 

3.3. Intermediate Reproducibility of Quantitative Tests.  Similar procedures may be used 
to estimate intermediate (intra-laboratory) reproducibility associated with the use of 
an analytical procedure in a single laboratory.  Even data obtained, for instance, in 
laboratory quality monitoring can be used to provide an estimate of intra-laboratory 
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reproducibility.   ISO/PTDS 19036:2005 (Part 6) describes a statistical procedure for 
analysis of paired data.  A worked example is shown in Annex IV. 

3.4. Qualitative Tests. Estimation of uncertainty associated with qualitative (e.g. presence 
or absence) methods has not been well documented and is currently the subject of 
discussion within ISO. 

3.4.1. Many of the potential errors that affect quantitative methods also affect 
qualitative methods; but there are also some additional potential errors that are 
inherent in the analytical procedure.  For example: 

3.4.1.1. In taking a sample for analysis, it is of critical importance to have 
knowledge of the probable distribution of organisms in the test matrix, 
especially when testing for organisms at the limit of detection of a 
method.   Whilst it may be possible to ensure reasonable conformity with 
a Poisson (random) distribution of index organisms in artificial test 
matrixes, such distribution should not be assumed to occur in natural 
matrixes and requires confirmation (e.g. using an Index of Dispersion 
Test such as that described by Fisher et al, 1922) before using such 
matrixes in collaborative studies.  In real life testing, erroneous decisions 
can result from an assumption that all microorganisms are distributed 
randomly at low level – there are some well-documented examples where 
“over dispersion” of organisms (e.g. due for instance to clumping) has 
resulted in a significant level of genuine false negative surveillance data.   

3.4.1.2. There is an intrinsic need to ensure effective growth of the index 
organism to critical levels during all pre-enrichment, enrichment and 
differential/diagnostic culture stages  – so culture medium composition, 
incubation times & temperatures, etc are critical to the success of the test. 

3.4.1.3. It is critical to ensure that the confirmatory stages of a test protocol do 
actually identify the index organism. 

3.4.1.4. Knowledge of the potential effect of competitive organisms is of major 
importance for all cultural and confirmatory stages of a test protocol. 

3.4.1.5. The decision on use of either true pairs or non-paired samples is of great 
importance in the interpretation of potential false negative or false 
positive results for method validation studies. 

3.4.2. The output of qualitative tests is a series of positive and negative responses.   
One approach to seeking to quantify such data was the derivation of the 
Accordance and Concordance concept (Langton et al, 2002) that sought to 
provide measures “equivalent to the conceptual aspects of repeatability and 
reproducibility”.  However, it is now considered that this approach is not 
sufficiently robust to be used in the manner proposed and adds no value to the 
original data. 

3.4.3. Provided that a sufficient number of parallel tests has been undertaken at each 
of several levels of potential contamination, then it is possible to quantify the 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



Appendix J – STWG Part 3 – Uncertainty 8-8-06 
Page 7 of 31 

 

test responses in terms of an estimated Level of Detection for (e.g.) 50% 
positives [LOD50](for details see Hitchins, 2005). 

3.4.3.1. This statistical approach essentially estimates the Most Probable Number 
of organisms at each test level and then analyses the relative MPN values 
using the Spearman-Karber approach. 

3.4.3.2. Alternative approaches including Probit and Logit analyses may also be 
appropriate in specific circumstances. 

3.4.3.3. What these methods have in common is an ability to transform purely 
qualitative data into a quantitative format for which error values can be 
derived so permitting an estimate of the uncertainty of the test result. 

3.4.3.4. An extrapolation of the approach would be to determine also the LOD0 
and LOD90 values such that a dose-response curve can be derived.  This 
may be of importance in differentiating between methods capable of 
detecting specific organisms at a similar LOD50 level but for which the 
absolute limit of non-detection (LOD0) and a selected higher limit of 
detection (e.g. LOD90) differ. 

3.4.3.5. An alternative approach is to estimate the uncertainty associated with the 
proportions of test samples giving a positive response, based on the 
binomial distribution. 

3.4.4. Examples of the way in which such approaches to analysis of qualitative data 
can be used are illustrated in Annex V. 
 

4. Reporting of Uncertainty 
4.1. The expression of uncertainty is of some importance in interpretation of data.   

Assuming a mean aerobic colony count (ACC) = 5.00 (log10) cfu/g and a 
reproducibility standard deviation of ± 0.25 (log10) cfu/g, then the expanded 
uncertainty is given, for instance, by:  

4.1.1. Aerobic colony count on product X is 5.00 ± 0.50 (log10) cfu/g; or 

4.1.2. Aerobic colony count on product X is 5.00 (log10) cfu/g ± 10% 

4.2. It is important not to refer to analytical methods as having a precision of e.g. ± 10% 
based on uncertainty estimates.  Uncertainty is a measure of variability i.e. a measure 
of the lack of precision.  

5. The use of uncertainty measures in assessing compliance of a test result with a 
defined criterion is of some importance and has been considered by the European 
Commission (Anon, 2003).  Jarvis et al (2004) and Jarvis & van der Voet (2005) 
have discussed the interpretation of data in relation to microbiological criteria for 
foods. 

For more information, please contact Basil Jarvis at basil.jarvis@btconnect.com. 
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Annex I 
Top-Down Procedure For Estimation Of Uncertainty 

 
1. The basis of the “top down” approach described by GUM (Eurachem 2000) is to identify 

and take account of all procedural stages of an analytical method. The variance 
associated with each individual stage is combined with the variances all the other stages 
and interactions that make up an analytical procedure in order to estimate a generic level 
of uncertainty for a method.  This is illustrated diagrammatically in the schematic below. 

 

 

 

 

 

 

2. Consider first the sample matrix: what are the likely errors that will affect the analytical 
result?   

2.1. The largest potential error sources will be: the spatial distribution of the 
microorganisms (random, under- or over dispersion as exemplified by evidence of 
clumping); the condition of the microorganisms (viable and vital, sublethally 
damaged, non-cultivatable); the effects of competitive organisms on the 
recoverability of specific types; whether the organisms are located primarily on the 
surface of, or more generally distributed throughout, the matrix; etc. 

2.2. However, the intrinsic nature of the matrix will also affect the results of an analysis.   

3. How representative is an analytical sample taken from a matrix? 

3.3. Should the analytical sample be totally representative of the whole matrix, or 
should it relate only to a specific part, e.g. the surface of a meat carcass?  If the 
former should the matrix be homogenized prior to taking a sample; if the latter 
should the surface layer be excised, swabbed, rinsed or tested using a replica 
plating technique?   What ever the method of sampling to what extent is the 
microflora in the analytical sample representative of both the number and types of 
microorganisms present in the original matrix. 

3.4. If the matrix is a composite food, should the sample represent the whole or 
individual parts of the food matrix (e.g. in the case of a meat pie should the pastry 
and the meat be analysed separately)? 

3.5. What size of sample should be tested?   Increasing the size of an analytical sample 
results in a decrease in the standard error associated with the mean weight of 
sample taken.   Similarly, increasing the weight of sample taken tends to increase 
the apparent colony count whilst reducing the overall variance of the mean count 
(Jarvis, 1989). 

    
Analytical Method 

Sample 
Matrix 

Sampling Analytical 
Result Procedure 
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4. At its simplest, the analytical process consists of taking an analytical sample, suspending 
that sample in a defined volume of a suitable primary diluent, macerating the sample, 
preparing serial dilutions, plating measured volumes onto or into a culture medium, 
incubating the plates, counting and recording the numbers of colonies and deriving a 
final estimate of colony forming units (cfu) in the original matrix.   At all stages 
throughout this process, errors will occur.   

4.1. Some errors, e.g. those associated with the accuracy of weighing, the accuracy of 
pipette volumes, the accuracy of colony counting, etc, etc can be quantified and 
measures of the variance can be derived.  

4.2. Some errors can be assessed, but not necessarily quantified; for instance, 
laboratory quality control procedures can be used to assess the extent to which a 
culture medium will support the growth of specific organisms.  Such data may 
potentially provide a correction factor for the yield of organisms on a particular 
culture medium; whether or not the use of a correction factor should be employed 
in microbiological practice is a matter of debate! 

4.3. However, other errors, such as those associated with individual technical 
performance on a day, cannot be quantified. 

5. Some analytical errors associated with microbiological practices are possibly not 
significant when compared to other errors, but how do you know this if the errors cannot 
be quantified?  To assess the uncertainty of an analytical microbiological procedure from 
the “top down” requires a full evaluation of all potential sources of error for each and 
every stage of an analytical procedure. 

6. Estimation of the standard uncertainty of an analytical procedure, once a reliable 
schedule of quantifiable errors has been produced, is done simply by combining the 
errors: 
                                 

where = reproducibility variance of the method and =  variance of any stage 
(a….z) within the overall method. 
 
By definition, the reproducibility standard deviation ( ) is derived from the square root 
of the variance: 
 
                              

2 2 2 2 2.....R a b x ys s s s s s= + + + + + 2
z

2
Rs 2

....a zs

Rs

2 2 2 2.....R a b x ys s s s s s= + + + + + 2
z  

 

7. The expanded uncertainty is derived by multiplying the standard uncertainty by a 
coverage factor k, which has a value from 2 to 3.  A value of 2 is normally used to give 
approximate 95% confidence limits; hence 
 
                                    U = k.  = 2.  Rs Rs

8. Niemelä (2002, 2003) gives a more detailed explanation of the “top down” approach to 
assessment of measurement uncertainty in microbiological analysis.
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Annex II 
“Bottom-up” Approach to Estimation of Uncertainty 

1. Traditionally, the parameters used to derive uncertainty measures are estimated from 
the pooled results of a “valid” inter-laboratory collaborative study, or in the case of 
intermediate reproducibility, from an intra-laboratory study.   Appropriate procedures 
to ensure that the study design is valid have been described inter alia by Youden & 
Steiner (1975) and by ISO (1994, 1998). 

2. The data from all participating laboratories are subjected to analysis of variance 
(ANOVA) after first checking for: 

2.1. Conformance with a “normal distribution” either by plotting the data or by 
application of appropriate tests for “normality”. 

2.2. Identification and removal of “outliers” using the methods described by Youden and 
Steiner (1975) or Horwitz (1995), followed if necessary by repeating the tests for 
conformance with “normality”. 

3. Quantitative microbiological data (e.g. colony counts and MPNs) do not conform to a 
normal distribution and require transformation to “normalise” the data before 
analysis.   

4. Transformations are done by converting each of the raw data values (xi) into the log10 
value (yi) where yi = log10 xi.   Strictly, it is more correct to use the natural 
logarithmic transformation (i.e. yi = ln xi) (van der Voet, 2004). 

5. For low level counts (typically < 100 cfu/g) that conform to the Poisson distribution 
(mean value (m) = variance (s2)), the data are transformed by taking the square root 
of each data value (i.e. yi = √xi). 

6. However, because of problems of over-dispersion frequently associated with 
microbial contamination, it may be preferable to test for (or to assume) conformance 
with a negative binomial distribution.  Some statistical packages (e.g. Genstat) 
include a facility to make this transformation (using the Maximum Likelihood 
Method programme RNEGBINOMIAL), but such procedures are not universally 
available and it can be very time-consuming to calculate manually (Jarvis, 1989; 
NMKL, 2002, Niemelä, 2003; van der Voet, 2004). 

7. Assuming a fully “nested” experimental design (e.g. duplicate testing of duplicate 
samples by “A” analysts in each of “L” laboratories), the residual mean variance (i.e. 
the variance of the replicated analyses on each sample) of the ANOVA provides an 
estimate of repeatability variance ( ).   The estimate of reproducibility variance ( ) 
first requires computation of the contributions to variance of the samples, analysts 
and laboratories.   This is illustrated below. 

2
rs 2

Rs

8. The repeatability standard deviation (sr) and the reproducibility standard deviation 
(sR), being the square root values of the respective variances, are the measures of 
standard uncertainty from which the expanded uncertainty estimates are derived. 
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9. Statistical Procedure to Derive Component Variances from an ANOVA Analysis 
Assume: trial consists of (p) laboratories (p=20) in each of which 2 analysts test 2 replicate 
samples and make duplicate analyses of each sample.  Hence, each laboratory carries out 8 
replicate analyses and the total number of analyses = 8p = 160.    
 
Each data value (ypijk) is allocated to a cell in the data table in the sequence laboratory (p), 
analyst (i), sample (j) and replicate (k), as shown below, and are then analysed by multivariate 
analysis of variance. 
 

Analyst (i =1) Analyst (i = 2) 
Sample (j = 1) Sample (j = 2) Sample (j = 1) Sample (j = 2) 

Laboratory 
(p = 

1…20) Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

1 y1111 y1112 y1121 y1122 y1211 y1212 y1221 y1222
2 y2111 y2112 y2121 y2122 y2211 y2212 y2221 y2222
3 y3111 y3112 y3121 y3122 y3211 y3212 y3221 y3222
4 y4111 y4112 y4121 … … … … … 
… … … … … … … … … 
… … … … … … … … … 
20 y20111 y20112 y20121 y20122 y20211 y20212 y20221 y20222

 
 

ANOVA table for a four-factor fully-nested experiment 
Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square Expected Mean Square 
Components* 

Laboratories SSlab p-1 = 19 SSlab/19 = MSlab  
 

2 2 22 4 8 2σ σ σ σ+ + +sam ana labr  

Analysts SSana p = 20 SSana/20 = MSana
2 2 22 4sam anarσ σ σ+ +  

Samples SSsam 2p = 40 SSsam/40 = MSsam
2 22σ σ+ samr  

 
Residual 

 
SSres 4p = 80 SSres/80 = MSres

2σr  

Total Total SS 8p –1=159   

* The components are shown as population variances since this is an expectation table. 
 
 
The residual mean square (MSres = 2sr

) provides the repeatability variance between duplicate 

analyses done on the same replicate sample. 
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The variance due to l samples ( 2
sams )is given by [MSsam - ]/2 2sr

The variance due to analysts ( ) is given by  2
anas 2 2[ 2− −ana sam rMS s s ] / 4

] / 8
2

The variance due to is laboratories ( ) given by  2
labs 2 2 2[ 2 4− − −lab sam ana rMS s s s

The Reproducibility Variance (  ) is given by 2
Rs 2 2 1[ ]+ + +sam ana lab rs s s s  

 
The Reproducibility Standard Deviation is given by 2 2 1

sam ana lab rs s s s+ + + 2   

The Repeatability Standard Deviation is given by 2
rs . 

 

WORKED EXAMPLE   (10 Labs x 2 Analysts x 2 Samples x 2 Replicate analyses) 

Log transformed colony counts (Log10 cfu/g) 
 

Analyst (i = 1) Analyst (i = 2) 
Sample (j=1) Sample (j=2) Sample (j=1) Sample (j=2) Laboratory 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

1 5.56 5.73 5.76 5.59 6.08 5.96 6.07 5.99

2 6.02 5.88 5.87 5.80 5.54 5.63 5.92 5.79

3 6.26 6.30 6.46 6.54 6.42 6.49 6.11 6.42

4 5.07 5.11 4.90 4.61 4.63 4.81 4.42 4.56

5 5.39 5.25 5.28 5.52 5.34 5.46 5.47 5.49

6 5.98 5.88 6.02 5.64 5.96 6.06 5.70 5.57

7 5.43 5.18 5.16 5.08 6.15 5.76 5.44 5.43

8 5.94 5.73 5.28 5.47 5.99 6.01 5.92 6.13

9 5.45 5.35 5.49 5.42 5.68 5.57 5.74 5.69

10 5.51 5.74 6.18 6.13 5.83 5.91 5.76 5.60

 
Tests for normality (e.g. Shapiro-Wilk, W = 0.9830, p= 0.0885) did not disprove the 
hypothesis that the log10 transformed data conform reasonably (although not perfectly) to a 
normal distribution. However, application of the Cochran Test (Horwitz, 1995) identified 
Laboratory 7 as an outlier; subsequently evaluation using the Grubbs test did not eliminate 
other laboratories although laboratories 3 & 4 appeared to be possible outliers.  
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ANOVA table for the four-factor fully nested experiment (All data included) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square 
(rounded to 4 places) 

Mean Square Components 

Laboratories 12.636 9 1.4040 
 

2 2 22 4 8+ + + 2
sam ana labs s s sr  

Analysts 1.4906 10 0.1491 2 2 22 4+ +sam anas s sr  

Samples 1.346 20 0.0673 2 22+ sams sr  

Residual 
 0.5554 40 0.0139 2sr  

Total 16.0272 79   

The residual mean square (MSres =  = 0.0139) provides the repeatability variance between 

duplicate analyses done on the same replicate sample. 

2sr

 
Component Variances 

Sample variance ( 2
sams ) = [MSsam- ]/2 = [0.0673 – 0.01389]/2 = 0.0267 2sr

Analyst variance ( ) =  = [0.1491 – 0.0673]/4 = 0.02045 2
anas 2 2[ 2− −ana sam rMS s s ]/ 4

/ 8
2

Laboratory variance ( )=  = [1.4040 – 0.1491]/8 = 0.1548 2
labs 2 2 2[ 2 4 ]− − −lab sam ana rMS s s s

Hence, Reproducibility Variance (  ) = 2
Rs 2 2 1[ ]+ + +sam ana lab rs s s s  =  

                                        [0.0139 +0.0267 +0.02045 +0.15686]  = 0.2179 
 
Reproducibility Standard Deviation = 2 2 1= + + +R sam ana lab rs s s s s2  = √0.2179 = ±0.4668 

Repeatability Standard Deviation =  =rs 2
rs  = √0.01389   = ±0.1178 

The mean colony count =  5.6682  ≈ 5.67 (log10) cfu/g 

Hence, Relative Standard Deviation of Reproducibility (RSDR)  

                                                 = 100 x 0.4668/5.6682  = 8.24% 

and, Relative Standard Deviation of Repeatability (RSDr)  

                                                 = 100 x 0.1178/5.6682  = 2.08%  

From these values the 95% expanded uncertainty of reproducibility is given by: 

U = 2  = 2 x 0.4668 = ±0.9336. ≈  ±0.93 (logRs 10) cfu/g 

 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 



Appendix J – STWG Part 3 – Uncertainty 8-8-06 
Page 17 of 31 

 

The upper and lower limits of the 95% Confidence Interval on the mean colony count are: 

UL = 5.67 + 0.93 = 6.60 (log10) cfu/g 

LL = 5.67 – 0.93 = 4.74 (log10) cfu/g 

 

Repeat analyses for 9 laboratories( after elimination of data for laboratory 7) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square 
(rounded to 4 places) 

Mean Square Components 

Laboratories 12.227 8 1.5284 
 

2 2 22 4 8+ + + 2
sam ana labs s s sr  

Analysts 1.0249 9 0.1139 2 2 22 4+ +sam anas s sr  

Samples 1.0405 18 0.0578 2 22+ sams sr  

Residual 
 0.4449 36 0.0124 2sr  

Total 16.0272 71   

The component variances were derived as: 

      Repeatability variance ( ) = 0.0124      Sample variance (2sr
2
sams )        = 0.0227 

     Analyst variance ( )       = 0.0140        Laboratory variance ( )  = 0.1168 2
anas 2

labs

Hence, Reproducibility Variance ( ) = 0.2279 2
Rs

Reproducibility Standard Deviation =  = √0.2279 = ±0.4753 Rs

Repeatability Standard Deviation    =  = √0.0124   = ±0.1112 rs

The mean colony count = 5.6921 ≈ 5.69 (log10) cfu/g 

Hence, Relative Standard Deviation of Reproducibility (RSDR) = 8.35%                                         

and, Relative Standard Deviation of Repeatability (RSDr) = 1.95%                                             

From these values the 95% expanded uncertainty of reproducibility is given by: 

U = 2  = 2 x 0.4753 = ±0.9506. ≈  ±0.95 (logRs 10) cfu/g 

The upper and lower limits of the 95% Confidence Interval on the mean colony count are: 

UL = 5.69 + 0.95 = 6.64(log10) cfu/g 

LL = 5.67 – 0.95 = 4.72 (log10) cfu/g 
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Comparison of ANOVAs with and without removal of outlier laboratory  
The table below shows that removal of one set of data (from the outlier laboratory) marginally 
increased the mean colony count and reduced the component variances for repeatability, 
samples, analysts and laboratories.   However the overall effect, in this specific example, was 
marginal in relation to the derived values for repeatability and reproducibility; and hence there 
was little effect on the level of expanded uncertainty. 
 
 

Parameter 10 Laboratories 9 Laboratories 
Mean Colony Count (log10 cfu/g) 5.6682 5.6921 

Repeatability Variance 0.0139 0.0124 

Sample Variance 0.0267 0.0227 

Analyst Variance 0.0205 0.0140 

Laboratory Variance 0.1548 0.1168 

SD repeatability (SDr) ±0.1178 ±0.1112 

Relative SDr 2.08% 1.95% 

SD reproducibility (SDR) ±0.4668 ±0.4753 

Relative SDR 8.24% 8.35% 

Expanded Uncertainty (U) ±0.93 ±0.95 

Upper Limit of  95% CI (log10 cfu/g) 6.60 6.64 

Lower Limit of 95% CI (log10 cfu/g) 4.74 4.72 
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Annex III 

Estimation of Intermediate Reproducibility based on Routine Monitoring Data 
 

1. Intra-laboratory uncertainty estimates can be made either by carrying out a full internal 
collaborative trial, with different analysts testing the same samples over a number of days 
or, for instance, using different batches or even different brands of commercial culture 
media.   In such a case the statistical procedure of choice is that described in Annex II.    

2. However, if a laboratory undertakes routine quality monitoring tests, it is possible to 
estimate reproducibility from these test data.   One approach is to use a 1-way ANOVA 
and to take the mean residual square as the estimate of reproducibility.  A preferred, and 
simpler procedure, is described fully in ISO19036: 2005; this determines the variance for 
each set of transformed replicate data values.    

3. The reproducibility standard deviation is derived from the square root of the sum of the 
duplicate variances divided by the number of data sets.   The equation is: 
 

                                 
2

1 2

1

( )
=

−
= ∑

n
i i

R
i

y yS
n

/ 2

2iy

   

where  are the log transformed values of the original duplicate counts (x1  and iy 1 and 
x2) and n is the number of pairs of counts. 

4. A worked example (based on log10 transformation) is presented below.  
5. Confusion sometimes arises between repeatability and intermediate reproducibility.   It 

must always be remembered that repeatability requires all stages of the replicated tests to 
be done only by a single analyst, carrying out repeat determinations on a single sample in 
a single laboratory, using identical culture media, diluents, etc within a short time period 
e.g. a few hours.  If more than one analyst undertakes the analyses and/or tests are done 
on different samples and/or on different days then the calculation derives a measure of 
intermediate reproducibility.  The procedure can be used to determined average 
repeatability estimates for individual analysts provided all the repeatability criteria are 
met.. 

6. Internal laboratory quality management is aided by the use of statistical process control 
(SPC).  The estimates of intermediate reproducibility provide a source of data that is 
amenable to SPC.   
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Worked Example (modified from ISO 19036:2005) 
The data below were derived from enumeration of aerobic mesophilic flora in mixed poultry meat 
samples.  The duplicate data values (xiA and xiB) are log transformed to give yiA and yiB, 
respectively.   The mean log10 counts ( y ) are derived from (yiA + yiB)/2; the variances (SRi

2) are 
derived from (yiA - yiB)/2; and the RSD values from 100*√ SRi

2/ y . 
 
 

Test(i) 
Colony 
Count A 
(cfu/g) 

 

Colony 
Count B 
(cfu/g) 

 

Log count A 
 

Log count B 
 

Mean  
log 

Count 

Absolute 
Difference 

in log 
count 

 

Variance 

Relative 
Standard 
Deviation

(%) 

 xiA xiB yiA=log10(xiA) yiB=log10(xiB) y  yiA - yiB SRi
2 RSDRi

i=1 6.70E+04 8.70E+04 4.83 4.94 4.88 0.11 0.00643 1.64% 
i=2 7.10E+06 6.20E+06 6.85 6.79 6.82 0.06 0.00173 0.61% 
i=3 3.50E+05 4.40E+05 5.54 5.64 5.59 0.10 0.00494 1.26% 
i=4 1.00E+07 4.30E+06 7.00 6.63 6.82 0.37 0.06717 3.80% 
i=5 1.90E+07 1.70E+07 7.28 7.23 7.25 0.05 0.00117 0.47% 
i=6 2.30E+05 1.50E+05 5.36 5.18 5.27 0.19 0.01723 2.49% 
i=7 5.30E+08 4.10E+08 8.72 8.61 8.67 0.11 0.00622 0.91% 
i=8 1.00E+04 1.20E+04 4.00 4.08 4.04 0.08 0.00313 1.39% 
i=9 3.00E+04 1.30E+04 4.48 4.11 4.30 0.36 0.06595 5.98% 

i=10 1.10E+08 2.20E+08 8.04 8.34 8.19 0.30 0.04531 2.60% 
         
Σ       0.2193  

Average     6.18   0.0219 
 
 

Using the log10-transformed data (yij), the reproducibility standard deviation is derived from: 
 

n
2

i1 2
i=1

10

(y ) / 2
0.00643 0.00173 ... 0.04531

0,02193 0,15 log cfu/g
10

i

R

y
S

n

−
+ + +

= = = ≈ ±
∑

 

 
 Average % Relative Standard Deviation (RSDav)= 
 Individual tests (i = 1….10) gave RSD values ranging from 0.47%  to 5.98%, with an overall 
value of 2.39%.       

Note: it is incorrect to take the average of the individual RSD values. 
Once sufficient data are available, a moving RSDav can be determined and used in a statistical 
process control system.

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 100*(    /   )=100*(0.15/6.18)=2.39% RS y



Appendix J – STWG Part 3 – Uncertainty 8-8-06 
Page 21 of 31 

 

                                                

Annex IV 
 Application of Robust Methods of Statistical Analysis  

1. Because of the problems with the occurrence of outlier data, several alternative 
approaches to the Analysis of Variance have been developed, based on Robust 
Methods of Statistical Analysis. 

2. Rather than relying on identification and removal of outlying data (which values 
could actually be valid results, albeit considerably different from most of the data) 
and then estimating the variance around the mean, alternative robust procedures rely 
on estimation of the variation around the median value. 

3. A mean value will be affected significantly by one or more high (outlier) values 
within a data set, whereas the median value is not affected.   Consider the following 
examples: 
 
A.  1, 4, 3, 6, 3, 5, 6, 3, 4, 5           n = 10,   ∑= 40,   Mean = 4.0  Median = 4.0 
 
B.  1, 4, 3, 6, 3, 5, 26, 3, 4, 5         n = 10,   ∑= 60,   Mean = 6.0,  Median = 4.0 
 
C.  1, 4, 3, 6, 3, 5, 26, 3, 4, 15       n = 10,   ∑= 70,   Mean = 7.0,  Median = 4.0 
 
D.  1, 4, 3, 6, 3, 5, 126, 3, 4, 15    n = 10,   ∑= 170,  Mean = 17.0,Median = 4.0 
 
E.   1, 4, 3, 6, 3, 5,       3, 4,           n = 8,     ∑=29,     Mean = 3.6,  Median = 3.5 
 

4. The presence of one or more high values (Examples B, C, D) has a significant effect 
on the mean value but no effect on the median value.   Removal of the high outliers 
(E) reduces both the mean and the median values.   

5. A similar effect would be seen with low value outliers.  Of course, occurrence of both 
high and low outliers could balance out the effect on the mean. 

6. There are two primary alternative techniques of robust analysis currently in use: 
6.6.1. The Analytical Methods Committee of the Royal Society Chemistry (AMC 1989, 

2001) describes one approach.  The procedure calculates the median absolute 
difference (MAD) between the results and their median value and then applies 
Hüber’s H15 method of winsorisation. Winsorisation is a technique for reducing 
the effect of outlying observations on data sets (for detail see Smith & Kokic, 
1996).  The procedure can be used with data that conform approximately to a 
normal distribution but with heavy tails and/or outliers.  An example is shown 
below. The procedure is not suitable for multimodal or heavily skewed data sets.  
The AMC website1 provides downloadable software for use either in Minitab or 
Excel (97 or later version). 

6.1.1. An alternative approach, known as the Recursive Median is based on extrapolation 
of the work of Rousseeuw & Croux (1993).   One version of this approach 

 
1 www.rsc.org/lap/rsccom/amc/amc_software.htm#robustmean
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(described fully in ISO 16140:2003) uses Rouseeuw’s recursive median Sn.    
However, Wilrich (2005a) recommends a modified approach to this procedure also 
based on Rousseeuw’s Sn computation. 

 
Worked Example - Analysis of data set containing outliers 

 
Duplicate Series of Colony Counts (as Log10 cfu/g) done by 1 Analyst in each of 10 

Laboratories 
Laboratory A B 

1 4.83 4.94 
2 4.05 3.99 
3 6.84 6.92 
4 4.90 4.93 
5 5.28 5.23 
6 4.86 4.72 
7 5.62 5.51 
8 4.50 4.68 
9 5.48 5.11 

10 5.04 5.34 
 
 

 
Laboratory 2 data look to be slightly low and laboratory 3 data to be high when compared with 
the other data. 
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Graphical and Descriptive Analysis of the Data 
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Mean Frequency Plot 5.140 
95% CI 4.602 to 5.678 

  
Variance 0.5662 

SD 0.7524 
SE 0.2379 
CV 15%
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Median 4.970 
97.9% CI 4.500 to 5.620 

  
Range Box Plot 

showing 
outliers 

2.79 
IQR 0.49 

   
Percentile    

2.5th - 
25th 4.838 
50th 4.970 
75th 5.330 

97.5th - 
  
  
   

 Coefficient p 
Shapiro-Wilk 0.9204 0.3605

Skewness 1.1222 0.1009
Kurtosis 2.4815 -

   

Although there is evidence of kurtosis and positive skewness, the log-transformed data 
conform fairly well to a “normal” distribution. The Box plot shows the presence of a potential 
low-level outlier (+) and a significant high-level outlier (○). 
 
One-way Analysis of Variance (ANOVA) without removal of outliers 
 

Source of Variation SS df MS F P-value F crit 
Between Laboratories 10.086 9 1.1207 70.816 7E-08 3.0204 
Within Laboratories 0.15825 10 0.0158    
Total 10.2443 19     
 
Repeatability SD = √0.0158 = 0.1258 
Reproducibility SD   = √ (1.1207 + 0.0158)  = √1.1365 = 1.0661 
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One-way Analysis of Variance (ANOVA) after removal of high outlier (lab 3) 
       

Source of Variation SS df MS F P-value F crit 
Between Laboratories 3.3464 8 0.4183 24.281 3E-05 3.2296 
Within Laboratories 0.15505 9 0.0172    
Total 3.50145 17     
 
Repeatability SD = √0.0172  = 0.1311 
Reproducibility SD  = √ (0.4183+0.0172) = √0.4355 = 0.6599 
 
One-way Analysis of Variance (ANOVA) after removal of both low and high outliers 
(labs 2 & 3) 
 

Source of Variation SS df MS F P-value F crit 
Between Laboratories 1.42124 7 0.203 10.599 0.0017 3.5005 
Within Laboratories 0.15325 8 0.0192   
Total 1.57449 15         
 
Repeatability SD = √0.0192  = 0.1311 
Reproducibility SD  = √ (0.203+0.0192) = √0.2222 = 0.4714 
 
 
 
Analysis of Variance using the AMC Method  
 
Software for this analysis, compatible with Microsoft Excel, can be downloaded from 
Royal Society of Chemistry statistical software.  A version for use in Minitab is also available. 
 
ROBUST ESTIMATES 

Parameter Value 
5.060622 Grand Mean 
0.116772 Within-laboratory/repeatability SD 
0.476556 Between-laboratory SD 
0.490654 Reproducibility SD 

c=1.5: Convcrit=0.0001 
Repeatability SD = 0.1168 
Reproducibility SD  = 0.4907 
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Comparison of data analyses by ANOVA, without and with removal of the high (*) 
outlier and both the high and low outliers (**), by Robust ANOVA (AMC 1989, 2001) 
and by Recursive Median (ISO 16140:2003) 
 

Parameter* ANOVA ANOVA* ANOVA** ROBUST RECMED 
Mean 5.14 4.95 5.06 5.06  
Median     5.05 
SDr 0.126 0.131 0.138 0.117 0.115 
RSDr 2.45% 2.65% 2.73% 2.31% 2.28% 
SDR 1.066 0.660 0.471 0.491 0.5590 
RSDR 20.45% 13.33% 9.42% 9.70% 11.07% 

* SDr = Standard Deviation of repeatability; SDR = Standard Deviation of reproducibility 
   RSDr = % relative standard deviation of repeatability  
   RSDR =  % relative standard deviation of reproducibility 
 
The effect of the outlier values on the Standard Deviation of reproducibility is clear from the 
above data.  Removal of the high outlier (*) reduces both the mean and the SDR; removal of 
both the high and low outliers (**) reduces both the mean value and the SDR to a level similar 
to than that seen in the Robust ANOVA.  The Recursive Median technique (working data not 
shown) produces a similar value for SDr but a somewhat higher SDR value than does the 
Robust Method.   
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ANNEX V 
 

Uncertainty Associated with Qualitative Methods 
 
1. By definition, a non-quantitative method merely provides an empirical answer to a 

question regarding the presence or absence of a specific index organism or a group of 
related organisms in a given quantity of a representative sample. 

2. Provided that multiple samples are analysed, and on the assumption that the test method 
is “perfect”, then the number of tests giving a positive response provides an indication of 
the incidence of defective samples within a “lot”.   

2.1. For instance, if a test on 10 parallel samples found 4 positive and 6 negative samples 
then the perceived incidence of defectives would be 40% (sic of the samples 
analysed).   

2.2. However, if no positive samples were found the apparent incidence of defectives in 
the “lot” would be zero.  However, it is not possible to say that the “lot” is not 
contaminated because the true incidence of defective samples will be greater than 
zero. 

3. Sampling theory for occurrence of defectives is based on the binomial distribution, in 
which the probability of an event occurring (p) or of not occurring (q) can be derived and 
an error estimate can be made based on a realistic number of samples analysed.  
Unfortunately, in laboratory practice it is not usually possible to analyse a realistic 
number of samples for the presence of specific microorganisms.   

3.1. Table 1 below shows the statistical probability of occurrence of 0, 1, or 2 defective 
units in 10 sample units from “lots” containing from 0.1 to 30% true defectives.  For a 
lot having only 0.1% defective units, the probability of detecting one or more 
defective (sic positive) samples is only 1 in 100 whilst for a lot having 5% true 
defectives there is still only a 40% probability of obtaining a positive result; even with 
20% true defectives there is still a 20% chance of not finding defective units when 
testing 10 sample units.  

3.2. Table 2 shows the probability of detecting 0, 1 or 2 defective units with increasing 
numbers of sample units tested when the true incidence of defectives is 10%.  The 
probability of finding no defective samples is 59% if only 5 samples are tested, 35% 
with 10 samples and 12% with 20 samples. 

3.3. These examples illustrate a basic characteristic of undertaking qualitative tests for 
specific organisms: unless the likelihood of contamination of the matrix is high, and 
the number of sample units tested is considerable and the analytical test itself is 
perfect, then the probability of detecting positive samples in food matrix is very low. 
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Table 1. Binomial Probability of detecting 0, 1 or 2 defective units in 10 sample units 
tested with increasing incidence of true defectives (mod from Jarvis, 2000) 

Probability (p) of detecting defective units True Incidence 
(%)of Defective 

Units in a lot 0 1 2 

0.1% 0.99 0.01 <0.001 

1% 0.90 0.09 <0.01 

5% 0.60 0.32 0.08 

10% 0.35 0.39 0.19 

20% 0.20 0.35 0.28 

30% 0.03 0.12 0.23 

 

 
 
Table 2. Binomial probability of detecting defective units with increasing sample units 
from a lot having 10% true defectives (mod from Jarvis, 2000) 

Probability of detecting the following number of defective units Number of Sample 
units (n) tested 0 1 2 

5 0.59 0.33 0.07 

10 0.35 0.39 0.19 

20 0.12 0.27 0.29 

50 <0.01 0.03 0.08 

 

 

3.4. Maximum Incidence and Level of Contamination.  Even when all test results are 
negative, use of the binomial distribution concept permits the derivation of a probable 
maximum contamination limit for a test lot. 

3.4.1. Assuming that results on all (n) sample units are negative, then for a given 
probability (p) the maximum incidence (d) of defective units is given by: 
 
                    100(1 (1 )nd p= − −  
 
Hence, if n = 10 and p = 0.95, then 
 

10100(1 (1 0.95) 100(1 0.05) 100(1 0.741) 25.88%nd = − − = − = − = . 
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=

3.4.2. Knowing the maximum incidence of defective sample units and the size of the 
sample units we can derive a Maximum Contamination level (C) from: 
 
                organisms per g,  
where W is the weight of the sample unit tested.   For the example given above and 
assuming that each of the 10 samples weighed 25g, then the maximum 
contamination level would be given by 
 
          organisms/g ≡ 10.4 organisms/Kg 
 

( /100)(1/ )C d W=

(25.88 /100)(1/ 25) 0.0104C =

3.4.3. In other words, the failure to detect a positive in 10 parallel tests merely indicates, 
at a 95% probability, that the index organism would be present in not more than 
26% of similar samples throughout the lot; and that the maximum contamination 
level would be 11 organisms/Kg of product. 

3.4.4. It might be thought that such a level of product security is insufficient, in which 
case it would be necessary to analyse a greater number of sample units and ideally 
to test larger quantities of sample.  It is essential also to recognise that this 
presupposes that the test method is “perfect”.  
 

3.5. Multiple Test Most Probable Number Estimates.   If some test results are positive, 
then we can derive an estimate of population density (the basis for derivation of a 
Most Probable Number) for multiple tests even at a single dilution level. 
 

3.5.1. The following equation provides the derivation of the MPN: 

    1        sM .ln
V n

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 , where   M = Most probable number, V = quantity of sample, s = 

number of sterile tests out of n tests inoculated. 

3.5.2. Assume 10 tests are set up on replicate 25g samples of product, 3 tests are positive 
and 7 are negative.  Then the MPN of contaminating organisms is:  
 
           1000        7 40 0 3567 14 27

25 10
M .ln . . .⎛ ⎞= − = − − =⎜ ⎟

⎝ ⎠
organisms/Kg ≈ 14 organisms/Kg 

 

3.5.3. Unfortunately, it is not possible to derive an estimate of the error of the MPN when 
tests are done at a single dilution level. 

3.6. Level of Detection Estimates.   The equation used in 3.5 is also the basis for deriving 
MPN values for use in the Spearman-Karber procedure to estimate the LOD50 for a 
test.  This is the level of organisms that will give 50% positive results when tested by 
an appropriate protocol.   Details of the procedure together with worked examples are 
given in the report by Hitchins (2005).   This method of quantification has the benefit 
that it is possible to derive a value for the standard error of the mean (sic LOD) 
estimate.  The procedure can be used to compare performance of two or more 
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methods where both have been evaluated under identical conditions in two or more 
laboratories. 

3.7. Estimation of repeatability and reproducibility for qualitative tests.  In a paper 
produced for ISO SC9 TC34, Wilrich (2005b) proposed the estimation of 
repeatability and reproducibility estimates for qualitative test procedures based on the 
binomial probability of detection of positive and negative results in different 
laboratories operating either at equal or at dissimilar sensitivity levels.  A set of 
simulation studies is presented, together with analyses of a set of practical 
interlaboratory assessments, which support the proposal but the method has yet to be 
evaluated in detail.    

4. Estimation of Error based on test performance.   One of the traditional problems 
associated with presence or absence tests relates to the likelihood that a method may give 
either a false negative (Type I error) or a false positive (Type II error) result.  A false 
negative result fails to detect the occurrence of a known index organism in a sample.  A 
false positive result indicates the presence of a specific index organism even though it is 
not present in the test matrix.  Such errors create specific problems for interpretation of 
test results.   

4.1. In a real life situation, where tests are done on natural matrixes, it is impossible to 
estimate the likelihood of detecting such false results.   It is essential therefore to 
ensure during development, evaluation and use of any method that the likelihood of 
such errors occurring is at an absolute minimum.  An efficient laboratory proficiency 
scheme provides a way to monitor the efficiency of a test procedure in any individual 
laboratory. 

4.2. But to be sure that false results do not occur requires the use of reference materials 
that can be relied upon to contain the index organism at a given level.  For high-level 
contamination that is not a major problem; the issue arises primarily where the level 
of detection is intended to be close to the minimum level of detection.   For instance, 
to detect 1 cfu of a specific organism in (say) 25g of sample implies that the organism 
is evenly distributed throughout a lot of test material such that each 25g sample unit is 
likely to contain the organism.  Only if it were possible to add a single test organism 
to each individual 25g sample could the probability that each sample would contain 
that organism be achieved and even then there is the real possibility that the organism 
would not survive the preparation and storage process.    

4.3. If larger quantities of test organism are added to a large batch of test matrix, which is 
then thoroughly mixed, the distribution of organisms throughout the lot would at best 
be random but could possibly be over dispersed due to the presence of clumps of 
organisms.   

4.4. Table 3 shows the probability of occurrence of 0 or ≥1 organisms in a 25g sample for 
different levels of inoculation.  If the target inoculum level is only 1 organism per 
25g, there is a 37% chance that less than 1 organism will not be present in the sample; 
to have a 99% probability that 1 or more organisms occur in a perfectly distributed 
sample matrix requires inoculation at a level of at least 5 organisms/25g.   Even then 
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one has to assume that the original inoculum contains the test organism at the relevant 
level – it must not be forgotten that the organisms in a well-mixed inoculum will 
themselves be distributed in accordance with Poisson.   It is therefore perhaps not 
surprising that at low inoculum levels, negative results may be found frequently.  It is 
for such reasons that we recommend the LOD50 approach of Hitchins (2005) for 
comparison of two or more methods of analysis. 

5. The effect of competitor organisms and other factors on the recovery of organisms 
to critical levels. 

5.1. A further potential cause of a false negative result is that during the multistage test 
protocol, the index organisms must be able to grow to a critical level to ensure 
effective transfer between different stages of the test.  The ability of an organism to 
grow is dependent not only on the physiological condition of the index organism in 
the sample matrix, but also on the micro-environmental conditions within the test 
system, the presence or otherwise of competitive organisms that may affect the 
growth of the index organism and the time/temperature factors used in the protocol. 

5.2. In their (BPMM) paper on Inter-laboratory Variability, LaBarre, Zelenka and Flowers 
(2005) have reviewed in detail the effects of competitive growth, problems associated 
with test media and other practical considerations in relation to the critical level of 
organisms for use in confirmatory tests following enrichment procedures.  The paper 
describes also the statistical aspects of optimisation of test protocols. 
 
Table 3.  Probability of occurrence of 0 or at least 1 organism in a 25g sample 
assuming perfect random distribution of test organisms in a matrix. 
 

Probability (px) of Occurrence in 25g sample units Target inoculation level 

(cfu/25g) <1 organism  1 or more organisms 

1 0.3679 0.6321 
2 0.1353 0.8647 

3 0.0498 0.9502 

4 0.0183 0.9817 

5 0.0067 0.9933 

10 <0.0001 >0.9999 
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Proposed Use of a 50 % Limit of Detection Value in Defining Uncertainty Limits in the 
Validation of Presence-Absence Microbial Detection Methods 

 
Background  
 
A 50 % endpoint Limit of Detection (LOD50) procedure can be used to calculate the absolute 

performance efficacies, and their associated uncertainties, of presence/absence methods for microbial 
detection in foods (3, 5, 8, 10).   

 
Validation of methods for microbial detection in foods or other matrices involves determining 

microbe recoveries. Recoveries are expressed qualitatively as presence-absence data, which are obtained 
from quantitative spiking experiments. Replicate samples of foods are spiked with the microbe of interest, 
generally at several concentration levels. Usually three different levels are used. However, only the data 
from the level which gives partial recovery are considered relevant. Such data are most reflective of a 
method’s detection endpoint but a limit of detection is rarely estimated. The calculation discussed here 
maximizes the use of the data from such trials by using data from more than one spiking level to calculate 
an LOD50.  

 
Performance efficacies of new microbial detection methods are usually determined by 

comparison to recognized standard methods. This comparison is only strictly valid when common 
samples are used for the new and the standard methods. Then the methods are being compared at an equal 
microbial concentration. The situation is more complicated when comparisons involve a non-paired 
sample experimental design. Nevertheless, to a first approximation, comparative method validations 
always have the advantage of not really needing to determine the exact spiking concentration and thus 
virtually side-steps the fundamental problem of microbial enumeration variability at low concentrations.  
However, it is difficult to compare the results from different trials because the variability of the 
proportions of positive recoveries can be at least partly due to the technical difficulty of standardizing the 
spike levels from trial to trial. Also, sometimes only a single method may be validated so no intra-study 
comparison is possible. 

 
The LOD50 method normalizes the results of such studies by estimating the spiking concentration 

(cfu/analytical portion size), which would correspond to 50 % recovery. Importantly, it also provides a 
measure of the uncertainties in terms of confidence intervals (at the 95% level) of the estimated LOD50. A 
50 % endpoint is used because the low concentration region of the recovery-concentration relationship is 
theoretically a sigmoid curve, it being governed by the Poisson distribution. In the case of Listeria 
methods, at least, recovery-concentration curves are clearly describable by the Poisson relationship (6).   
The confidence intervals of asymptotic region estimates are somewhat narrower than those of estimates in 
the mid-region. Nevertheless, the concentration corresponding to the midpoint of a sigmoid recovery 
curve can be more precisely determined than for a point in the one of the asymptotic regions tending 
toward either 0 or 100% recovery.      

 
Methods for calculating an LOD50
 

   The LOD50 calculation could potentially employ one of several mathematical tools (Table 1). 
These are used to calculate the dose corresponding to a 50% response value (ID50 and LD50) from the log-
normal dose-response curve observed in an animal infection and mortality study. Thus in the LOD50 
determination, the proportion of replicates at a given spiking level that is culture negative (nominally 
uninfected) is treated just as would be the proportion of uninfected or surviving animals at a given 
challenge dose. Conversely, a test culture positive result is analogous to an animal infection or death. 
These calculation methods have been reviewed (1, 4, 7). They have various limitations and advantages 
(Table 1). The calculations are often laborious but this is not a major factor given the appropriate 
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computer application software. The methods differ statistically but appear to give endpoint estimates that 
differ only by a few percent. This variation is insignificant relative to the imprecision of spiking level 
estimation (7).  

 
Table 1. Estimation methods for LD50 and ID50 values 

 
Name Characteristics 
Probit analysis High efficiency; reiterated interpolation; replicates/spike & spiking   intervals can vary 

 
Reed & Muench Lowest efficiency 

 
Spearman-Kärber Symmetrical doses; 0 and 100 % response values needed 

 
Moving Average  Simple interpolation; curve shape not presumed  

 
 
   The lack of clear statistical superiority of the other calculation methods to the Spearmann- Kärber 
method along with its previous application to LOD50 calculations in studies of foods spiked with 
pathogens (5, 8, 9, and 10) is the reason for its use in the present proposal. Also, an Excel version of the 
generalized Spearman-Kärber LOD50 calculation for 3, 4, and 5-level spiking protocols   (2; 
Anthony.Hitchins@cfsan.fda.gov), now makes it more easily circulated and PC-user friendly. The 
accompanying Excel file provides a 3-level spike example, a trial worksheet, a back-up copy, a revealed 
code version, and the generalized Spearman-Kärber formula.  

 
The LOD50 Determination  
 
Foods are quantitatively spiked in replicate (at least in triplicate) with the test microbe at several 

inoculum levels (at least three). The proportion of replicates in which the microbe is detected at each 
spiking level is used to calculate the LOD50 by the generalized version of the Spearman-Kärber method_. 
The confidence interval of the estimate narrows with increasing replication. The spiking level 
enumerations have their own confidence limits, which can be quite broad as in a 3-replicate MPN, but the 
overriding effect of any one MPN value is more or less ameliorated by the use of 3 or more enumeration 
levels in estimating the LOD50 value. Furthermore, the number of replicates can be increased to reduce 
the confidence interval of the MPN.  

 
When there is comparison with a standard method the spiking level can be determined from the 

standard method result, since the MPN enumeration would be done with the standard method anyway. 
Thus the proportion of negative culture at a given spiking level yields, by the Poisson equation, the mean 
spiking level. In this method, the number of replicates should be preferably 10 or more. Replication 
values of 40 or more are easily achievable in multilaboratory experiments.  

 
Incidentally, in multilaboratory experiments the LOD 50% can be calculated from the pooled data 

or it can be estimated as the mean of the individual laboratory LOD 50% values. In the latter case an 
estimate of interlaboratory uncertainty can be made. 

 
Table 2 shows a simulated LOD50 experiment. 
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Table 2.  Example of an LOD50 experiment using hypothetical data for a 4-level spike 
 
Spiking Level 
(cfu/25 g)
  

Microbe Recovery 

 No. replicates No. positive No. negative LOD50 (CI)a

0b 10 0 10 . 
1 10 5 5 1.26 (0.53 – 3.03) cfu/25-g 
10 10 9 1 . 
100 10 10 0 . 
a Calculated by the Spearman-Kärber method. CI = 95 % confidence interval. 
 b A value of 0.1 was assumed for the calculation. 
 
An LOD90 value can be calculated from the LOD50 value in Table 2: it is 2.87 cfu/25-g test portion. This 
calculation assumes that the LOD endpoint curve is described by the Poisson equation even when the 
observed LOD50 value is different from the theoretical Poisson-based minimum LOD50 value of 0.307 
cfu/25-g test portion. This assumption is reasonable for the majority of published Listeria method 
validation studies (6).  
 

Typically collaborative qualitative microbiology method validations involve 3 spiking levels and 
5 replicate determinations per level for each of 10 or more laboratories. This provides 150 or more data 
points (10 laboratories x 3 levels x 5 replicates).  Intuitively, the LOD50 estimate by mathematical 
interpolation will be more accurate the greater the number of data points comprising the curve in the zone 
around the LOD50 point.  Increasing the number of concentration levels does not require maintaining the 
same level of replication in order to sustain a given confidence level interval with a constant number of 
laboratories. This is illustrated in Table 3.  
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Table 3. Confidence Intervals for Two Spike-Level:Replicate Trade-off Scenarios with Similar LOD50 
Results 
10 lab x 7 level x 3 rep - 20a = 190 data points 10 lab x 3 level x 7 rep - 20a = 190 data points 

Mean 
Level b 
(cfu/25g) 

Replicates 
per level 

Positive Replicatesc Mean 
Level b 
(cfu/25g) 

Replicates 
per level 

Positive Replicatesc

4.6 30 30 4.6 90 90 
2.3 30 27 . . . 
1.15 30 21 . . . 
0.625 30 13 0.625 90 39 
0.313 30 6 . . . 
0.157 30 1 . . . 
0(<0.075) 10c 0 0(<0.075) 10c 0 

      
LOD50 = 0.760 cfu /25-g analytical portion LOD50 = 0.700cfu /25-g  analytical portion 
95% confidence interval =  0.575– 0.875 95% confidence interval =  0.550-.875 
a  The number of replicates at the zero level can be less than at the other levels, say 1 per laboratory, since their 
purpose here is to provide a zero positives data point as well as the usual assurance of a negligible natural 
contamination rate.  
b Level intervals based on 1:2 dilutions as in R. Flowers’s dilution to extinction method. Not all levels used in the 3-
level scenario. More levels in the LOD concentration zone could be set-up with a lower dilution rate, e.g. 1in 1.5.  

 

c Common levels of the two scenarios have equal proportions of positive replicates. 
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Discussion and Recommendations 
 

The method is broadly applicable (3) to all published AOAC collaborative studies except that in a 
proportion of the results it has been necessary to resort to dummy values for the required 100% positive 
response data points.  The dummy concentration value for 100% positive response is currently over 
conservatively set at 10x the experimental concentration that yielded the highest proportion of positives. 
In a planned revision of the Spearman-Kärber LOD50 program, the 100% positive dummy concentration 
will be calculated by multiplying the highest concentration giving positives by the reciprocal of the 
proportion positive at that concentration. Of course, this necessity for a 100% positive dummy 
concentration can be largely avoided by increasing the number of concentration levels studied from the 
usual 3 levels to 4 or more concentration levels. The process of preparing concentrations that give partial 
positives is somewhat chancy and so it is likely that analysts are preparing levels giving 100% positive 
responses but are not presenting them since the current study protocol does not require them.  So increase 
of the number of levels is unlikely to be onerous especially since the number of replicates per level can be 
correspondingly reduced (i.e. the product of the number of replicates per level and the number of levels 
need not be changed).  
 

The generalized Spearman-Kärber method also requires a data point giving the concentration 
corresponding to zero positives.  MPN limits of detection vary from <0.003 to <3 MPN/g depending on 
the maximum MPN sample size in the range from 100g down to 0.1g.  There is no precise non-zero spike 
concentration (zero is not compatible with the logarithmic Spearman-Kärber calculation) corresponding 
to the controls used in AOAC studies. A value of 0.004 per g has been chosen as the concentration 
corresponding to the negative controls. This value is close to the minimum MPN likely to be encountered 
in spiking studies but more importantly is the extrapolation to zero% positive point of the midpoint region 
of the response curve, which is approximately linear and, which contains the LOD50 point of interest. 
While one can interpolate the LOD50 value from the experimental data, using the Spearman-Kärber 
method to obtain the LOD50 also provides the confidence limits.  
 

A proportion of published AOAC study results were not readily amenable to the LOD 
calculation. The use of 3-tube MPN sometimes gives sequential concentrations that are equal even though 
they should be different and even gives sequential values that are different but appear as if they have been 
inadvertently reversed.  These problems can be solved by using a better MPN enumeration with more 
tubes per level or by using the standard method positive responses in a one level multi-tube MPN 
calculation (if a standard method is available) or by using the method suggested by R. Flowers.  
Nevertheless, retention of the conventional statistical tests used currently would be advisable for rare 
instances were the LOD50 cannot be calculated. 
 
Conclusions 
 

The calculation of an LOD50 value by the generalized Spearman-Kärber method provides a 
convenient way to condense virtually all of the raw data from a multi-level food spiking trial into one 
readily comprehensible absolute value of performance efficacy. In addition, it provides the estimate’s 
uncertainty, given as the 95% confidence interval. The breadth of the confidence interval will depend 
inversely on the number of replicates at each level. The replication at each level need not be constant in 
this generalized version of the Spearman-Kärber calculation.  More sophisticated calculation methods 
may become available in the future but meanwhile the generalized Spearman-Kärber method is already 
available to do the job of calculating detection limits and moreover it has the advantage of not requiring 
complex computations. The problem with modeling an empirical response curve from all available study 
data is that each data point from study to study involves so many variables and the plot of % positive 
versus concentration is highly scattered. 
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In study designs where a new method and the standard method are compared, LOD50 values do 

not just augment the conventional relative performance parameters with absolute performance 
parameters; in addition, they also provide estimates of the uncertainties of the method’s performances. 
LOD50 values for one-method study designs can be compared with previously published values for that 
and other methods and also with the theoretically expected minimal recovery value for a particular 
analytical portion size.  
 

It is clear that the generalized Spearman-Kärber method will be most useful if the AOAC 
collaborative study design is adjusted appropriately by innovations such as Russ Flowers’s dilution to 
extinction method.   
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Version 09/03/2002 Limit of Detection Program for Qualitative Microbiology Methods  
NOTE There is code only for  3-, 4-, and 5-level spiking protocols 

< Anthony.Hitchins@cfsan.fda.gov >
PURPOSE 

This programmed non-parametric statistical procedure (Spearman-Karber 50% Endpoint) will calculate the microbial analyte concentration (and confidence limits) in a 
given food matrix that corresponds to a 50 % probability of a positive result with the test method used. The microbe may be spiked or incurred.

REQUIREMENTS
1. A minimum of three different concentrations is needed but more are preferable even at the expense of the degree of replication.
2. At least one spiking level should give a partially positive response otherwise no confidence limits can be calculated.
3. One of the concentration (spiking) levels should give a 100% response.
4. One of the concentration levels should give a 0% response (= negative control).
5. Three, and preferably at least 5 or 6, replicates per concentration (spiking) level are needed. (the confidence level window narrows with increased replication) 
6. A constant  analytical portion size.
7. Equal spacing of log spiking (concentration) levels and equal numbers of replicates per spike level are preferable but not obligatory.

ACCOMMODATIONS
1. Sometimes it is possible to have only 2 replicates per concentration level.
2. An uninoculated control set of replicates
is often used. In this case a concentration of 0.004 MPN/g(mL) or cfu/g(mL) can
be allocated to such a set of data (since the calculations take the log of the
concentration levels, 0 cannot be  used, and a concentration of 0,004 is assumed
to give always a negative result).
3. If no spike level has a 100% replicate growth response, use a dummy set of data. The spike level should be 10 times the uppermost level giving a partial response.



s

PROCEDURE Analytical portion size
 (g or mL)

Step 1. Insert analytical portion size in the green-filled cell. 25
Step 2a. Insert spike sizes either on an analytical portion basis or  on a per g/mL basis in the appropriate green-filled cells. Spike size must increase in the downward direction.
Note: If values are entered on a analytical portion basis they will be processed to a per g/mL basis
Step 2b. Enter number of replicates at each spiking level. (The number of spiking levels must include one with all replicates not grown  and one with all replicates grown.)
[Read the guidelines in the hidden comments. They may be revised in the future.]
Caution: Do not copy from cells without color fill. They may contain hidden code and, if so, only the code will be copied. 
              Similarly, do not paste to such cells as any code present will be obliterated.
Step 3. Read cream color -filled Results panel.

       Enter spike size    Enter spike size Enter number of replicate Enter number of replicates 
cfu or MPN/portion cfu or MPN / g or mL per spiking level grown

0

Total degrees of freedom = -1
From Table enter t value for 95% confidence level 2.03

RESULT

LOD 50 % (cfu or MPN per g/mL) lower limit upper limit
        
         
         

TABLE t-values
df t-value (2-tail)
3 3.182
6 2.447
9 2.262
12 2.179
15 2.131
20 2.086
25 2.06
30 2.042
40 2.021
60 2

infinite 1.96
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DO NOT DISTRIBUTE Appendix L - STWG Part 4b - LOD 50% Spearman -Karber.xls

Jan-00
Page 1 of 3Limit of Detection Program for Qualitative Microbiology Methods  

< Anthony.Hitchins@cfsan.fda.gov >
PURPOSE This programmed non-parametric statistical procedure (Spearman-Karber 50% Endpoint) will calculate the microbial analyte concentration (and confidence limits) in a given food 

matrix that corresponds to a 50 % probability of a positive result with the test method used. The microbe may be spiked or incurred.

REQUIREMENTS
1. A minimum of three different concentrations is needed but more are preferable even at the expense of the degree of replication.
2. At least one spiking level should give a partially positive response otherwise no confidence limits can be calculated.
3. One of the concentration (spiking) levels should give a 100% response.
4. One of the concentration levels should give a 0% response (= negative control).
5. Three, and preferably at least 5 or 6, replicates per concentration (spiking) level are needed. (the confidence level window narrows with increased replication) 
6. A constant  analytical portion size.
7. Equal spacing of log spiking (concentration) levels and equal numbers of replicates per spike level are preferable but not obligatory.

ACCOMMODATIONS
1. Sometimes it is possible to have only 2 replicates per concentration level.
2. An uninoculated control set of replicates
is often used. In this case a concentration of 0.004 MPN/g(mL) or cfu/g(mL) can
be allocated to such a set of data (since the calculations take the log of the
concentration levels, 0 cannot be  used, and a concentration of 0,004 is assumed
to give always a negative result).
3. If no spike level has a 100% replicate growth response, use a dummy set of data. The spike level should be 10 times the uppermost level giving a partial response.
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PROCEDURE Page 2 of 3Analytical portion size
(g or mL)

Step 1. Insert analytical portion size in the green-filled cell. 25
Step 2a. Insert spike sizes either on an analytical portion basis or  on a per g/mL basis in the appropriate green-filled cells. Spike size must increase in the downward direction.
Note: If values are entered on a analytical portion basis they will be processed to a per g/mL basis
Step 2b. Enter number of replicates at each spiking level. (The number of spiking levels must include one with all replicates not grown  and one with all replicates grown.)
[Read the guidelines in the hidden comments. They may be revised in the future.]
Caution: Do not copy from cells without color fill. They may contain hidden code and, if so, only the code will be copied. 
              Similarly, do not paste to such cells as any code present will be obliterated.
Step 3. Read cream color -filled Results panel.

       Enter spike size    Enter spike size Enter number of replicate Enter number of replicates Spike size 
cfu or MPN/portion cfu or MPN / g or mL per spiking level grown df cfu or MPN / g or mL

0.001 10 0 9 1 0
0.01 10 1 9 1 0.01
0.1 10 9 9 1 0.1

0 0 0
0 0 0
0 0 0

Total degrees of freedom = 27 3
From Table enter t value for 95% confidence level 2.03

RESULT

LOD 50 % (cfu or MPN per g/mL) lower limit upper limit
0.025 0.016 0.04

        
        

TABLE t-values
df t-value (2-tail)
3 3.182
6 2.447
9 2.262
12 2.179
15 2.131
20 2.086
25 2.06
30 2.042
40 2.021
60 2

infinite 1.96
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3-SPIKING LEVEL DESIGN
spike levels number of replicates r of replicates 

MPN or cfu /g- per spiking level grown log spike proportion grown
Lowest (or uninoculated) 0.001 10 0 -3 0 a b a*b

0.01 10 1 -2 0.1 -2.5 0.1 -0.25 A B A*B
Highest level 0.1 10 10 -1 1 -1.5 0.9 -1.35 0.01 1 0.01

log median -1.6 var sqrt var
0.01 0.1

Log 50% endpoint Log lower limit upper limit
-3.6848 -4.152309 -3.22

RESULT
50 % endpoint lower limit upper limit

0.025 0.016 0.04

4-SPIKING LEVEL DESIGN
spike levels number of replicates r of replicates 

MPN or cfu /g- per spiking level grown log spike proportion grown
Lowest (or uninoculated) 0.001 10 0 -3 0 a b a*b A B A*B

0.01 10 1 -2 0.1 -2.5 0.1 -0.25 0.01 1 0.01
0.1 10 9 -1 0.9 -1.5 0.8 -1.2 0.01 ##### #####

Highest level 0 0 0 #NUM! #DIV/0! #### #### #NUM! var sqrt var
log median #NUM! ##### #NUM!

Log 50% endpoint Log lower limit upper limit
#NUM! #NUM! ####

RESULT
50 % endpoint lower limit upper limit

#NUM! #NUM! #NUM!

5-SPIKING LEVEL DESIGN
spike levels number of replicates r of replicates 

MPN or cfu /g- per spiking level grown log spike proportion grown
Lowest (or uninoculated) 0.001 10 0 -3 0 a b a*b A B A*B

0.01 10 1 -2 0.1 -2.5 0.1 -0.25 0.01 1 0.01
0.1 10 9 -1 0.9 -1.5 0.8 -1.2 0.01 ##### #####
0 0 0 #NUM! #DIV/0! #### #### #NUM! #DIV/0! ##### #####

Highest level 0 0 0 #NUM! #DIV/0! #### #### #NUM! var sqrt var
log median #NUM! ##### #NUM!

Log 50% endpoint Log lower limit upper limit
#NUM! #NUM! ####

RESULT
50 % endpoint lower limit upper limit

#NUM! #NUM! #NUM!

6 OR MORE SPIKING LEVEL DESIGNS

Not typically needed.
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Generalized Spearmann-Kärber Formula (see “Karber Method” entry on p. 
354ff of Encyclopedia of Statistics, volume 4 )

k-1

μ~      =  ∑  (pi+1 - pi) (xi + xi+1) / 2
i = 1

μ~ = estimator of the mean, μ 

xi ’s are the log spiking concentrations with xi <… < xk 

k is the number of spiking levels

           pi ‘s are observed proportions of positive replicates in an experiment where 
                ni  replicates  are tested independently at spiking level  xi yielding ri 

                positive replicates , so pi = ri  / ni,  where  i = 1, …, k. 
                It is assumed that pi = 0 and pk = 1.

k-1

var (μ~) =      ∑ [pi / qi / (ni-1)] [xi+1 – xi-1)/2]2 

i = 2

provided that ni ≥ 2, and i = 1… , k , and where qi  = 1- pi.



Version 09/03/2002 Limit of Detection Program for Qualitative Microbiology Methods  

< Anthony.Hitchins@cfsan.fda.gov >
PURPOSE 

This programmed non-parametric statistical procedure (Spearman-Karber 50% Endpoint) will calculate the microbial analyte concentration (and confidence limits) in a given food 
matrix that corresponds to a 50 % probability of a positive result with the test method used. The microbe may be spiked or incurred.

REQUIREMENTS
1. A minimum of three different concentrations is needed but more are preferable even at the expense of the degree of replication.
2. At least one spiking level should give a partially positive response otherwise no confidence limits can be calculated.
3. One of the concentration (spiking) levels should give a 100% response.
4. One of the concentration levels should give a 0% response (= negative control).
5. Three, and preferably at least 5 or 6, replicates per concentration (spiking) level are needed. (the confidence level window narrows with increased replication) 
6. A constant  analytical portion size.
7. Equal spacing of log spiking (concentration) levels and equal numbers of replicates per spike level are preferable but not obligatory.

ACCOMMODATIONS
1. Sometimes it is possible to have only 2 replicates per concentration level.
2. An uninoculated control set of replicates
is often used. In this case a concentration of 0.004 MPN/g(mL) or cfu/g(mL) can
be allocated to such a set of data (since the calculations take the log of the
concentration levels, 0 cannot be  used, and a concentration of 0,004 is assumed
to give always a negative result).
3. If no spike level has a 100% replicate growth response, use a dummy set of data. The spike level should be 10 times the uppermost level giving a partial response.



s

PROCEDURE Analytical portion size
 (g or mL)

Step 1. Insert analytical portion size in the green-filled cell. 25
Step 2a. Insert spike sizes either on an analytical portion basis or  on a per g/mL basis in the appropriate green-filled cells. Spike size must increase in the downward direction.
Note: If values are entered on a analytical portion basis they will be processed to a per g/mL basis
Step 2b. Enter number of replicates at each spiking level. (The number of spiking levels must include one with all replicates not grown  and one with all replicates grown.)
[Read the guidelines in the hidden comments. They may be revised in the future.]
Caution: Do not copy from cells without color fill. They may contain hidden code and, if so, only the code will be copied. 
              Similarly, do not paste to such cells as any code present will be obliterated.
Step 3. Read cream color -filled Results panel.

       Enter spike size    Enter spike size Enter number of replicate Enter number of replicates 
cfu or MPN/portion cfu or MPN / g or mL per spiking level grown

0.001 10 0
0.01 10 1
0.1 10 9

Total degrees of freedom = 27
From Table enter t value for 95% confidence level 2.03

RESULT

LOD 50 % (cfu or MPN per g/mL) lower limit upper limit
0.025 0.016 0.04

         
         

TABLE t-values
df t-value (2-tail)
3 3.182
6 2.447
9 2.262
12 2.179
15 2.131
20 2.086
25 2.06
30 2.042
40 2.021
60 2

infinite 1.96
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Fit for Purpose Validation 
Classification Matrix 

 
The following are proposed guidelines listing general categories (Purpose) and 
corresponding Minimum Validation Requirements. The level of method validation used 
should be based on several factors including risk, application, industry standards or 
regulatory requirements.  When choosing a method and desired outcome, also, consider 
other factors that contribute to the result including sample size, sampling plan, 
laboratory/technician proficiency and measurement uncertainty.  
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Purpose Examples Minimum Method Validation 
Requirements 

Raw Material Tests 

In-process Tests 

Process 
Monitoring        
Product 
Monitoring Indicator Test (Quality) 

SLV (Single Lab Validation) Methods:  Methods validated through 
single laboratory studies including inclusivity, exclusivity, 
ruggedness, stability and lot-to-lot variation.  For qualitative 
methods, method performance is determined by LOD50 and 
compared to a reference method, if available.  For quantitative 
methods, method performance is determined by LOD, LOQ, RSDr 
and linearity in comparison to a reference method. 

Routine Sample Tests 

HACCP Verification Tests 
Process 
Verification  

Supplier Verification Tests 

MLV (Mult-Lab Validation) Methods:  Methods have been 
validated by two or more laboratories.  Inclusivity, exclusivity, 
ruggedness, stability and lot-to-lot variation studies are performed in 
one lab.  Method performance studies (see SLV) are conducted in 
two or more labs following identical protocols using the same 
matrix/strain combinations. 

New Process Validation 
Tests Process 

Validation Equipment Validation 
Tests 
  

MLV (Mult-Lab Validation) Methods:  Methods have been 
validated by two or more laboratories.  Inclusivity, exclusivity, 
ruggedness, stability and lot-to-lot variation studies are performed in 
one lab.  Method performance studies (see SLV) are conducted in 
two or more labs following identical protocols using the same 
matrix/strain combinations. 

Finished Product Release 
Tests 
Routine/Scheduled Audit 
Tests 

Regulatory 
Screening, 
Commercial 
Screening Routine Import Tests 

HCV (Harmonized Collaborative Validation) Methods: Methods 
that have been validated by full collaborative study.  The 
collaborative study must report valid data for method performance 
(see SLV) using robust statistcs without removal of outliers, except 
for assignable causes.  The HCV must be preceded by a succssful 
SLV or MLV. 

"Official Samples" 
Regulatory 
Confirmation 
Testing 

Tests in response to 
complaints or previous 
positives 

HCV (Harmonized Collaborative Validation) Methods: Methods 
that have been validated by full collaborative study.  The 
collaborative study must report valid data for method performance 
(see SLV) using robust statistcs without removal of outliers, except 
for assignable causes.  The HCV must be preceded by a succssful 
SLV or MLV. 

Forensic 
Testing 

Lab Confirmation tests for 
BioTerrorism Agents 

HCV (Harmonized Collaborative Validation) Methods: Methods 
that have been validated by full collaborative study.  The 
collaborative study must report valid data for method performance 
(see SLV) using robust statistcs without removal of outliers, except 
for assignable causes.  The HCV must be preceded by a succssful 
SLV or MLV. 

Emerging Pathogens 

Use Best Available Method (dependent on critical time and risk)          
SLV (Single Lab Validation) Methods:  Methods validated through 
single laboratory studies including inclusivity, exclusivity, 
ruggedness, stability and lot-to-lot variation.  For qualitative 
methods, method performance is determined by LOD50 and 
compared to a reference method, if available.  For quantitative 
methods, method performance is determined by LOD, LOQ, RSDr 
and linearity in comparison to a reference method                   Crisis 

Management  

Emerging Disease 
Outbreaks 

MLV (Mult-Lab Validation) Methods:  Methods have been 
validated by two or more laboratories.  Inclusivity, exclusivity, 
ruggedness, stability and lot-to-lot variation studies are performed in 
one lab.  Method performance studies (see SLV) are conducted in 
two or more labs following identical protocols using the same 
matrix/strain combinations. 
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Recommendations for Future Research 
 
In the course of this project, the working groups identified various areas where further research 
was needed, or a more comprehensive review of the documents developed for this project.  The 
areas of further research include the following: 
 
Validation Study Design and Statistical Analysis 
 
1. Evaluate statistical approaches for qualitative and quantitative methods including: (1) further 
development of procedures for describing the Limit of Detection for quantitative methods; (2) 
further development of recommendations for use of the generalized Spearman-Karber method 
for estimating the LOD50 for qualitative methods; and (3) evaluation of alternative approaches to 
the Spearman-Karber method e.g. Logit, Probit and other statistical procedures currently under 
investigation by the ISO TC34/SC9/SWG.  Active participation in the ISO committee 
discussions is encouraged.  A comparison of the generalized Spearman-Karber method to logit 
and probit analyses will be undertaken.  It is important to determine what issues are important for 
an appropriate statistical method.  The most appropriate method will depend on the study design 
and the assumptions of the statistical method.  The consensus opinion of the task force is that 
more than two levels of contamination are needed for an LOD50 analysis. 
 
2. Use of existing AOAC data for assisting in design issues and choice of statistical methodology 
for future validation studies.   This could include proper consideration of Type II error in 
addition to Type I error, and should develop a structured approach for making decisions based on 
the data.  Non-AOAC data (e.g., clinical data) should be considered as well since AOAC data 
has design limitations.  Effort should be made to identify individuals outside of AOAC (e.g., 
through FDA’s Center for Devices and Radiological Health) that may be doing innovative work 
in this area. 
 
3. There is a concern about the statistical comparisons used that are usually weighted to the 
prevention of Type I error (stating a difference exists when one does not) over Type II error 
(stating no difference exists when one does).  The statistical hypothesis in testing evaluates if 
there is a different between two groups (two-tail test), one group is larger than another (upper-tail 
test), or one group is less than another (lower-tail test).  There is no test for equivalence in 
significance-testing, yet that is often the major focus of AOAC testing.  That is, that Lab A and 
Lab B results are not different.  Perhaps a remedy as simple as increasing Type I error levels 
( 050.>α ) and reducing Type II error levels ( 200.>β ) would be useful. 
 
4. The project timeline did not allow full discussion of the differences between Single 
Laboratory Validation (SLV), Multi-Laboratory Validation (MLV) and Collaborative Validation 
(HCV) in terms of the statistical confidence related to method performance and the effects of 
changes in number of samples, levels, analysts, labs, etc.   The task force recommends that 
further work be done to elaborate these differences. In addition, the task force recommends 
investigation of the effectiveness of current AOAC Official Methods for Single Laboratory 
Validation (SLV) procedures, Multi-Laboratory Validation procedures (MLV) and harmonized 
Collaborative Validation studies (HCV), relative to the recommendations concerning the design 
of verification studies.  Develop general guidelines for method validation protocols relative to 
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different applications (fit for purpose) and how these might be modified depending on the level 
of confidence required (how much uncertainty can be tolerated).  Ideally, the guidelines would 
be flexible to allow for practical considerations, such as allowing an increased number of 
samples per lab to compensate for fewer labs in a study. 
 
Confirmation of Results 
 
5. As new innovative technologies are exploited for food pathogen detection, the gap between 
the LOD50 of the alternative method and the LOD50 of the reference cultural method (“gold 
standard”) is expected to widen.  This can result in presumptive positive results for the 
alternative method that cannot be confirmed culturally.  In addition, as new pathogens emerge, 
gold standard methods may not exist.  Finally, we must consider validation of methods to detect 
organisms that are viable but not culturable or not easily culturable, such as mycobacteria and 
viruses.  In these cases, it is necessary to develop new approaches.  Several approaches to be 
evaluated include: 
 

a. Quantification of the confidence in the presumptive positive results in the method 
validation study.  One proposal is to determine the incidence of positive results for a given 
uninoculated food matrix.  Assuming the incidence is low, some statistical confidence is 
gained that presumptive positive results obtained in a validation study of the inoculated 
food matrix reflect the presence of the target analyte.  The task force recommends that this 
concept, a modification of the clinical positive predictive values and negative predictive 
values, should be further discussed and developed. 

b. Confirmation using methods based on technology distinct from the alternate method being 
validated.  For example, a PCR test may be used to validate an immunoassay result.  RNA 
targets could be used to ensure detection of live cells. 

c. Confirmation based on detection of multiple analyte markers.  In the absence of a suitable 
confirmatory test (high sensitivity and specificity), multiple tests could be used for 
confirmation and the level of agreement between these tests specified in order to achieve a 
true result. 

d. Comparison of fractionally positive results to the theoretical Poisson and/or other 
distributions. 

 
Preparation of Inoculated Samples 
 
6. Test the dilution to extinction method for preparing samples for validation studies.  Dilution to 
extinction is essentially an MPN method based on probability with an assumed distribution.  The 
method should be further developed and tested to determine the number of levels and number of 
samples per level that should be tested and what level of recovery and statistical confidence can 
be achieved.  Further, experimentally determine if these techniques can reliably calculate the 
level of target organism at the limit of detection. 
 
Method Verification 
 
7. The task force recommends that a laboratory intending to adopt a method that has been 
validated, verify the performance of that method in their laboratory.  Future work is required to 
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develop procedures for verification of all validated methods, so that the method description will 
include a minimal verification procedure. 
 
Ruggedness Testing
 
8. Ideally, every method validation would be initiated with a single lab validation to assess a 
variety of method performance parameters.  If a method is intended to be validated through a 
multi-lab or collaborative study, this would occur after successful completion of the single lab 
validation.  The task force recommends that some ruggedness testing of the method be 
performed as part of the single lab validation study.  Critical parameters to be tested in the SLV 
ruggedness studies depend on the type of method under consideration.  Future work will include 
development of guidelines for choosing parameters and designing ruggedness studies. 
 
 
 
Note:  Ultimately, the goal of the BPMM is to produce new proposed AOAC guidelines for 
validation, verification, modification and extension of microbiological methods. 
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1. Purpose:  This document lists and explains the terms used by the BPMM Task 

Force of AOAC International. 
 
2. Scope:  The definitions included in this Appendix are common terms used in the 

BPMM Task Force for AOAC International report to the contractor. 
 
3. References: 

FSIS Lab Quality Manual – Appendix A: Glossary, Rev. 02 
Analytical Terminology for Codex Use, 2002. 
AOAC INTERNATIONAL Guidelines for Laboratories Performing 

Microbiological and Chemical Analyses of Food and Pharmaceuticals, An Aid to 
Interpretation of ISO/IEC 17025, 2004. 

AOAC INTERNATIONAL Methods Committee Guidelines for Validation of 
Qualitative and Quantitative Food Microbiological Official Methods of Analysis, 
2002. 

Official Methods of Analysis of AOAC INTERNATIONAL, 17th edition. 
ISO Guide 2, 30, 9000. 
State of Massachusetts Environmental Protection Agency Glossary for Quality 

Assurance Terminology. 
21 CFR Part II. 

 
4. Definitions:
 
Accuracy of a Measured Value:  A measure of the expected “closeness of agreement” between 
a measured value and the accepted, “true,” or reference value.  It is the expected value of the 
absolute value of the difference between the measured value and the true or accepted reference 
value. 
 
Accuracy of an Attribute Test: The percentage of correct responses. 
 
Accuracy Index: The square root of the sum of the bias squared and the variance for individual 
results, used as a measure of test accuracy within and among laboratories. 
 
Alpha α-probability:  The probability of a Type I error. 
 
Analyte: The microorganism, substance or chemical constituent that is analyzed. 
 
ANOVA: An acronym for a statistical procedure entitled Analysis Of Variance. 
 
Assignable Cause(s): The reason, (root cause(s)) that a Shewhart Chart produces an “Out of 
Control Signal.”  Assignable causes may not ever be identified; in fact they may not exist. 
 
Attribute (k-class) test – A test for which the measurement procedure yields k possible answers; 
applied usually when k is equal to 2 (e.g., pass/fail), or 3(e.g., acceptable, marginal, 
unacceptable). 
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Average )( X  Chart: A Shewhart Chart that plots the average of results from units considered as 
one sample versus sample number. 
 
Beta β-probability: The probability of a Type II error. 
 
Bias: The difference between the expected value of test results and an accepted reference value: 
Note: Bias is the total systematic error as contrasted to random error.  There may be one or 
more systematic error components contributing to the bias.  A larger systematic difference from 
the accepted reference value is reflected by a larger bias value. 
 
Binomial Probability Distribution: A probability distribution characterized by situations 
having two possible outcomes, such as, coin toss or in microbiological situations the presence or 
absence of a pathogen: e.g. if p is the probability of a head, then on N independent tosses of the 
coin, the number of heads is distributed as a binomial distribution with parameter vales N and p.  
The expected value of the number of heads, considered as a random variable, is Np and the 
variance is Np(1-p). 
 
Blank: A substance that contains none of the analytes of interest subjected to the usual analytical 
or measurement process to establish a baseline or background value.   
There are several types of blanks, each with a specific purpose including: 

Reagent Blank - A blank containing no matrix elements that are carried through the 
analytical method to detect any contamination occurring during sample analysis. 

Method (Tissue) Blank - A blank prepared to represent the sample matrix as closely as 
possible and treated like a sample through one or more phases of sample preparation 
and analysis.  It serves to provide an estimate of all contamination occurring during 
all the processing/analysis steps to which it is subjected, as well as any endogenous 
matrix interferences. 

 
Calibration: The set of operations which establish, under specified conditions, the relationship 
between values of quantities by a measuring instrument or measuring system, or values 
represented by a material measure or a reference material, and the corresponding values realized 
by standards. 
 
Calibration Laboratory: A laboratory that performs calibration (as a service). 
 
Calibration Method: A specified technical procedure for performing a calibration. 
 
Certified Reference Material (CRM): A reference material, characterized by a metrologically 
valid procedure for one or more specified properties, accompanied by a certificate that provides 
the value of the specified property, its associated uncertainty, and a statement of metrological 
traceability reference material, accompanied by a certificate, one or more of whose property 
values are certified by a procedure which establishes traceability to an accurate realization of the 
unit in which the property values are expressed, and for which each certified value is 
accompanied by an uncertainty at a stated level of confidence 

NOTE 1: The concept of value includes qualitative attributes such as identity or 
sequence. Uncertainties for such attributes may be expressed as probabilities 
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NOTE 2: Metrologically valid procedures for the production and certification of 
reference materials are given in, among others, ISO Guides 34 and 35 

NOTE 3: ISO Guide 31 gives guidance on the contents of certificates 
 
Certified Reference Culture (CRC): Microbiological; a reference culture certified by 
technically valid procedure, accompanied by or traceable to a certificate or other documentation 
which is issued by a certifying body; e.g., cultures used for verifying test systems, validation of 
methods. Cultures used for QC tests of media must include strains traceable to a type culture 
collection, where feasible. 
 
Coefficient of Variation (CV%): 100 times the ratio of the standard deviation to the mean, 
expressed as a percentage, e.g., a CV of 20% means that the standard deviation is 0.2 times the 
mean.  The CV is sometimes referred to as the Relative Standard Deviation. 
 
Common Cause Variation: See inherent variation. 
 
Consensus Distribution: The test sampling distribution used by a laboratory for evaluating 
laboratory performance within a quality assurance program. 
 
Consensus Standard: A reference standard for a test agreed to by a group of laboratories as 
representing a value that can be used for proficiency testing. 
 
Confidence Interval:  A possible range of values for a parameter of interest (e.g., analyte 
concentration in a test sample), constructed from the observed result, based on the sampling 
procedure and method of measurement, so that this range has a specified probability of including 
the true value of the parameter (over identically repeated sampling, given all things being equal 
except for specified random variation).  The specified probability (e.g., 95%) is called the 
confidence level, and the end points of the confidence interval are called the confidence limits or 
bounds. 

NOTE: Confidence intervals reflect only the effects of random errors.  They do not take 
systematic errors (bias) into account. 

 
Confirmation: The unambiguous determination of an analyte’s presence. 
 
Controlled Document: A document subjected to controls that will ensure that the same version 
of the document is held by or is available to all personnel to whom the document is applicable. 
 
Control Chart: See Shewhart Chart. 
 
Control Limit: A line placed on a Shewhart Chart that is three standard deviations above, 
(Upper Control Limit, UCL), or below, (Lower Control Limit, LCL), the process average or 
process target value. 
 
Control Measure (CM):  An action or activity that is used to assure that a Performance 
Criterion (PC) or a Performance Standard (PS) is met. 
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Controlled Variation: Variation that is both expected and predictable over time. It is indicative 
of points falling randomly between the control limits on a Shewhart Chart (also see Inherent 
Variation). 
 
Count (C) Chart: A Shewhart Chart that plots obtained counts on samples versus sample 
number. 
 
Counts per Unit (U) Chart: A Shewhart Chart that is plots obtained the ratio of count versus 
sample size on samples versus sample number. 
 
Coverage Factor: A numerical factor used as a multiplier of the standard deviation to determine 
a confidence interval. 
 
Covariance: A measure of strength of association of two variables, x and y, calculated as: the 
expected value of the product of the deviations of the two variables for the same units from their 
respective expected values: 
 
Correlation: A standardized measure of association of two variables equal to the ratio of the 
covariance divided by the product of the two standard deviations. 
 
CUSUM Chart: A cumulative sum chart that cumulates, over successive samples, deviations 
from some target value.  For charting purposes, the lower bound for the CUSUM value (for 
detecting positive bias) and an upper bound for the CUSUM value (for detecting negative bias) 
are imposed. This chart is especially useful if one wishes to detect moderate biases (relative to 
the standard deviation). 
 
Discrete Test – A test for which the measurement procedure yields possible answers that can be 
mapped into the set of whole numbers. 
 
Empirical Method: A method that determines a value that can only be arrived at in terms of the 
method per se and serves by definition as the only method for establishing the accepted value of 
the item measured. 
 
Measurement Error: The difference between an individual test result and the true value of the 
measurand. 
 
Expected value: The expected value of a quantity is the weighted average of all possible values 
of that quantity within some defined population of units that are assigned values of the quantity, 
where the weight for an individual value is equal to the probability of obtaining that value. The 
designation of the expected value is: E(x), where x is the variable of interest – considered as a 
random variable - and E is the expected value operator. 
 
False Negative:  A test result that wrongly identifies an analyte as absent, when in fact it is 
present. 
 
False Negative Rate: The probability of a false negative (given that the analyte is present). 
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False Positive: A test result that wrongly identifies an analyte as present, when in fact it is 
absent. 
 
False Positive Rate: The probability of a false positive (given that the analyte is absent). 
 
Fitness for Purpose: The degree to which data produced by a measurement process enables a 
user to make technically and administratively correct decisions for a stated purpose. 
 
Food Safety Objective (FSO):  The maximum frequency and/or concentration of a hazard in a 
food at the time of consumption that provides an acceptable level of risk for the designated 
population. 
 
Harmonized Collaborative Validation (HCV): HCV provides the highest measure of 
ruggedness in analytical methods.  Method performance is characterized in a specified number of 
laboratories. (See also Interlaboratory Study.) 
 
Individual (Xi) Chart: A Shewhart Chart that plots the results versus sample number. 
 
Inherent Variation: Variation that is due to many random, unknown, events that affect the true 
results associated with individual units of some (homogeneous) population to differ from the 
expected value, 
 
Interlaboratory Study: A study in which several laboratories measure a specified quantity in 
one or more “identical” portions of sufficiently homogeneous, stable materials under 
documented conditions, the results of which are compiled into a single document. 

NOTE: The larger the number of participating laboratories, the greater the confidence 
that can be placed in the resulting estimates of the statistical parameters. The IUPAC-
1987 protocol (Pure & Appl. Chem., 66, 1903-1911(1994)) requires a minimum of 
eight laboratories for method-performance studies. 

 
Interlaboratory Comparisons: The organization, performance and evaluation of tests on the 
same or similar test items by two or more laboratories in accordance with predetermined 
conditions. 
[ISO 13528:2005] 
 
Known Value (see reference material and recovery): A value of some measurand that has 
measurement uncertainty which is considered insignificant to the extent that any value within the 
confidence interval associated with the measured value would not affect the evaluation of the 
true value. 
 
Laboratory: A body that calibrates and/or tests. 
 
Limit of Detection (LOD): The lowest concentration of analyte or level of measurand that can 
be reliably (with specified degree of confidence, e.g., 97.5% or 2 standard deviations above the 
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mean blank value) be observed or found in the sample matrix by the method used, when 
compared to the reagent blank or method tissue blank. 

LOD50: The concentration of analyte or level of measurand at which 50% of replicate 
samples are positive (e.g., exceed 2 standard deviations above the mean blank value) 
and 50% of replicate samples are negative. 

LOD90: The concentration of analyte at which 90% of replicate samples are positive and 
10% of replicate samples are negative. 

 
Limit of Quantitation (LOQ): The smallest measured amount of analyte in a sample that can be 
reliably quantified with a specified degree of precision. 
 
Linear Range: The range of analyte concentrations over which instrumental or method 
responses are directly proportional to concentration. 
 
Lower Control Limit (LCL): The value that is three standard deviations below a process 
average or target, or at some specified (low) percentile of a presumed distribution. On a 
Shewhart chart, the value is depicted as a line, for which an out of control signal occurs when a 
plotted point is below the line. 

NOTE: An out of control signal in the case when monitoring microbiology or chemical 
characteristics would be interpreted here as a process improvement. 

 
Matrix: The material or compound in which an analyte is retained. 
 
Mean or Sample Mean: The sum of the individual sample values in a set divided by the number 
of values. 
 
Measurand: The particular quantity subject to measurement. 

NOTE 1: For example, vapor pressure of a given sample of water at 20 °C. 
NOTE 2: The specification of a measurand may require statements about quantities such 

as time, temperature and pressure. 
 
Measurement Uncertainty: A parameter, associated with the result of a measurement, which 
characterizes the dispersion of values that could reasonably be attributed to the measurand. 
(VIM) 

NOTE: A measure of the reliability of an analytical result arising from random variation 
of measuring a measurand by some (specified) procedure.  For a single quantity, for 
purposes of the AOAC, the measure is typically expressed as a confidence interval 
with finite confidence limits, symmetrical about a “central” estimate of the 
measurand.  An exception would be in the situation where all sample results are non-
detect (negative), or below a certain threshold, for which a confidence interval for the 
percentage positive or above the threshold would range from 0% to some upper 
confidence bound. Unless specified otherwise, the confidence level of the 
measurement of uncertainty is 95%. 

 
Method Detection Limit: See Limit of Detection. 
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Method: A series of steps for performing an activity (e.g. sampling, analysis, quantification), 
systematically presented in the order they are to be executed. 
 
Moving Range (MR) Chart: A Shewhart Chart plots the range of consecutive sample results 
versus the higher of the two sample numbers. 
 
Multi-Laboratory Validation (MLV): MLV is a collaborative study of an analytical method 
for which repeatability and reproducibility are measured in at least two laboratories. 
 
Non-conformity: The non-fulfillment of a requirement to a standard or guideline. 
 
Normal Distribution: The probability distribution commonly referred to as the bell-shaped 
curve/ distribution. Sixty-eight (68) percent of results are expected to fall within one standard 
deviation (SD) of the mean and 95% within 2 SD of the mean. It is the distribution most often 
observed when measurement values are from a population for which the deviations from the 
expected value are due to inherent variation (see above).  Under controlled situations, (processes 
or laboratory methods) the distribution of measured values can be estimated by assuming a 
normal distribution.  The average of sufficiently many results can be often assumed to be normal 
distributed. 
 
Number (NP) Chart: A Shewhart Chart that plots the obtained number of units, considered as 
one sample, which have the characteristic of interest versus the sample number. 
 
Outliers: Specific value(s) from a set of values obtained from samples, considered not to belong 
to the same distribution of the other sample values, based on a statistical test, typically with 
specified α-probability (e.g., 5% or less). 
 
Out of Control (of a process): The situation in which factors, not expected within normal 
operating conditions, are affecting the process output results. 
 
Out of Control Signal (for a process): Results from a quality control sampling plan  for which 
there is a  low probability of occurrence, when the process is assumed to not to be out of control 
(See Statistical Process Control). 
 
Performance Characteristics:  Measurable outcomes of a method’s behaviour derived from 
sample analysis, e.g. Accuracy, precision, recovery, specificity (selectivity), sensitivity (limits of 
detection), inclusivity, exclusivity linearity, range, scope of application, 
 
Performance Criterion (PC):  An output quantity and criterion that the output quantity must 
satisfy in order to provide or contribute to meeting a Performance or Food Safety Objective. 
 
Performance Objective (PO):  The maximum frequency and/or concentration of a hazard in a 
food at a specified step in the food chain before the time of consumption that provides or 
contributes to a Food Safety Objective or Appropriate Level of Protection, as applicable. 
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Performance Standard (PS):  “Objectively measurable” quantities and a set of criteria 
associated with a process that is used to control some hazard, and is (often) imposed by 
government regulations. The PS statement envelopes the PC, PO or FSO and control measures 
(CM) and often is indistinguishable from one of these.  The requirement of “objectively 
measurable” implies that the measures that are used must be easy to obtain, transparent, and 
reproducible.  A consequence of this requirement is that the risk-effects of actions that are 
needed to comply with a performance standard may not be directly measurable or determinable. 
 
Performance Verification: See Verification. 
 
Poisson Probability Distribution: A distribution of the set of non-negative integers (e.g., 
counts) typically used when sampling from a medium for which the concentration, density or 
level (per gram or ml) is uniformly distributed throughout the medium.  The distribution is 
characterized by one parameter, which is the expected value of the counts. 
 
Precision: A measure of the expected closeness of agreement between independent test results 
under stipulated conditions; the square root of the expected value of the square of the difference 
of two “independent” results, given the stipulated conditions. 

NOTE: Precision may also refer to the defined quantity divided by the square root of 2, 
which would provide an estimate of the standard deviation of individual results. 

 
Probability (of a value): A number between zero and 1, inclusive, which is coupled with the 
value that is assigned to units of some population (of units). The quantity is equal to the 
proportion of times that the value is obtained when, either all the units with their corresponding 
values are listed, or when the units are randomly selected, an arbitrary large number of times (or 
infinite number of times), such that each unit has the same “chance” of being selected. 

NOTE: The latter part of this definition is somewhat circular since the definition includes 
the notions of randomness and equal chance which are probabilistic notions. The 
definition is based on a frequentist view point – the implication is that probabilities 
and thus statistical characterizations of method and process performance cannot be 
made unless data are collected and the probabilities are estimated using statistical 
procedures. For a further discussion of probability, see von Mises (1951, “Probability, 
Statistics, and Truth, 2nd revised English ed, prepared by H. Geiringer, The 
MacMillan Co, NY, 1957). 

 
Procedure: A series of detailed processes that impact on an analytical outcome. 
 
Process: A step or steps that transform inputs (materials, labor, energy, methods and machines) 
into measurable outputs. 
 
Process Control Testing - Sampling product of a process, and making measurements on the 
samples to determine whether the process is in control or not. 
 
 
Proportion (P) Chart: A Shewhart Chart that plots the proportion of individual units (results 
from the units recorded together) having the characteristic of interest. 
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Proficiency Testing: Determination of laboratory calibration or testing performance by means 
of interlaboratory comparisons or comparison to assigned value of analyte. 
 
Proficiency Test Sample: Test material with microorganisms or chemical analytes that is tested 
periodically by a number of locations to determine the proficiency of recovery, using statistical 
analysis where appropriate. 
 
Qualitative Method: A method that identifies analytes based on chemical, biological, or 
physical properties and that gives a result in the form of presence or absence in a certain size of 
test portion. 
 
Quality Assurance (QA): Those systematic activities, defined by management, that are done 
outside of the actual analysis to provide confidence that the analysis will satisfy given 
requirements for quality. 
Note: Examples of these activities include training, audit and review. 
 
Quality Control (QC): 

1) Those activities that are performed during the analysis to fulfill the requirements for 
assuring quality. Examples include control charting, blank determinations, spiked 
samples, repeat determinations and blind samples. 

2)  Activities performed by an establishment to assure that process controls are not “out 
of control.”  Sampling of product and plotting results on a Shewhart control chart is 
an example of a QC activity. 

 
Quality Control Sample (QCS): A test portion sample with known contents of analytes to carry 
through the entire method to verify and monitor laboratory performance. 
 
Quantitative Method: A method that identifies analytes and provides an estimate of the amount 
present in the test sample, expressed as a numerical value in appropriate units, with trueness and 
precision fit for the purpose. 
 
Range: 

1. The range of an analytical procedure is the interval between the upper and lower 
concentration (amounts) of analyte in the sample (including these concentrations) for 
which it has been demonstrated that the analytical procedure has a suitable level of 
uncertainty. 

2. When used to measure and control variation as with the Range (R) Shewhart Chart the 
range is the largest value in a subgroup of data minus the smallest value in the same 
subgroup. 

 
Range (R) Chart: A Shewhart Chart that plots the range of results from units considered as one 
sample, versus sample number. 
 
Recovery: The fraction of analyte quantified by the analytical method, expressed as a percentage 
of the amount “known” to be present in the sample. 
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Reference Culture (RC): A traceable culture with characteristics sufficiently well established to 
be used to calibrate/verify test systems, test media and validate methods. 
 
Reference Distribution: The test sampling distribution used by a laboratory for evaluating its 
performance (within a quality assurance program). 
 
Reference Material: Material characterized by a metrologically valid procedure for one or more 
specified properties, accompanied by a certificate that provides the value of the specified 
property, its associated uncertainty, and a statement of metrological traceability 

NOTE 1: The concept of value includes qualitative attributes such as identity or 
sequence. Uncertainties for such attributes may be expressed as probabilities. 

NOTE 2: Metrologically valid procedures for the production and certification of 
reference materials are given in, among others, ISO Guides 34 and 35. 

NOTE 3: ISO Guide 31 gives guidance on the contents of certificates 
 
Relative Percent Difference: Difference between two values divided by the average of the two, 
expressed as a percentage. 
 
Reference Standard: A standard, generally having the highest metrological quality available at 
a given location in a given organization, from which measurements are derived. 

NOTE: Generally, this refers to recognized national or international traceable standards 
such as National Institute of Standards and Technology (NIST) thermometers and 
weights. Other standards may not be traceable to a national standard such as filters for 
setting wavelengths. 

 
Relative Standard Deviation (RSD%): See coefficient of variation. 
 
Repeatability: (of results of measurements): The standard deviation of results of measurements 
of the same measurand carried out under the same conditions of measurement. 

NOTES: 
 These conditions are called repeatability conditions which include: 

- the same measurement procedure 
- the same observer 
- the same measuring instrument, used under the same conditions 
- the same location 
- repetition over a short period of time 

 
Repeatability Limit: The value of which  the absolute difference between two test results 
obtained under repeatability conditions may be expected to be less than or equal to, with a 
probability of 95%, (also called the critical difference for groups of test results). 
 
Replicate Test:  An analysis performed more than once.  The result of each individual analysis 
is a replicate test result. 
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Reproducibility (of results of measurements): The standard deviation of results of 
measurements of the same measurand carried out under changed conditions of measurement, in 
the broadest sense.  Basically it is assumed that the results arise from a population designated by 
all possible laboratories, analysts, environmental conditions, measuring instrument, reference 
standard and other pertinent factors that could affect the results.  A valid statement of 
reproducibility requires specification of the conditions changed. 

 
Reproducibility Limit: The value of which  the absolute difference between two test results 
obtained under reproducibility conditions may be expected to be less than or equal to, with a 
probability of 95%. 
 
Robustness: A measure of an analytical method capacity to remain unaffected by small but 
deliberate variations in method parameters and provides an indication of its reliability during 
normal usage. 
 
Ruggedness:  The ability of an analytical procedure to resist changes in results when subjected 
to minor changes in environmental and procedural variables, laboratories, personnel, etc. 
 
Sample: Any material brought into the laboratory for analysis. 
 
Sample Handling: The manipulation to which samples are exposed during the sampling 
process, from the selection from the original material through to the disposal of all samples and 
test portions. 
 
Sample Preparation:  The process of obtaining a representative test portion from the sample 
which includes selecting a subsample(s) and in-laboratory processing (i.e. mixing, reducing, 
coring, quartering, blending, and grinding). 
 
Sampling: A procedure whereby a part of a substance, material or product is taken from a well-
defined collection of substances, materials, or product, to be used for characterizing, testing or 
calibrating features of the population. 
Two major types of sampling can be identified: 

1. Probability or statistical sampling, where the collected material is considered as a 
“representative” of the whole – that is, the selected units are collected with known 
probability of selection, which enables deductively statistical based inferences to be 
made regarding the whole population. 

2. Convenience, such as forensic analysis, where the sample is not “representative” of 
the population, but is determined by availability or convenience, quota (judgment), 
and for which inferences to a population must be made with the aid of judgment. 

NOTE 1: Sampling procedures should describe the sampling plan, selection, withdrawal, 
and preparation of a sample.  The resulting sample “represents” a larger quantity such 
as a lot or batch. 

NOTE 2: The laboratory staff is often not involved in the sampling process, but analysts 
may be consulted concerning proper sample size (the amount of the sample, such as 
25 grams, 5 one pound packages, etc) or the use of appropriate preservatives, and 
they may be asked to provide suitably prepared containers.  ISO 17025 requires that, 
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where relevant, a statement to the effect that the results relate only to the items tested 
shall be made. 

NOTE 3: Often the probabilities of selection are not known but can be approximated and 
assumed to be equal to some values without any significant introduction of bias. 

 
Scope of Application: The range of matrices to which a method may be applied; usually based 
on method validation studies. 
 
Screening Method: A method designed to detect the presence of an analyte in a sample at or 
above some specified concentration (target level).  . 
 
Segregate: Set apart; can represent setting apart by space and time. An example would be the 
separation (segregation) of samples and standards to avoid cross-contamination. 
 
Selectivity (Specificity): The extent to which the analytical method can detect/determine 
particular analyte(s) in a complex mixture without interference from the other components in the 
mixture. 
 
Exclusivity:  The probability that the method will classify a test sample as negative, given that a 
test sample is a known negative. 
 
Sensitivity: The difference in analyte concentration corresponding to the smallest difference in 
the response of the method that can be detected.  It is represented by the slope of the calibration 
curve. 
 
Inclusivity: The probability that the method will classify a test sample as positive given that a 
test sample is a known positive. 
 
Shewhart Chart: A series of charts developed by Dr. Walter Shewhart in the 1920s to provide 
labors and management with a system for identifying when processes are operating in a steady 
state or when processes are not stable. They consist of plotting specified sampled results versus 
sample number, and could include horizontal lines depicting target values and out of control 
limits. 
 
Single Laboratory Validation (SLV): SLV is a single laboratory study of an analytical method 
which  determines performance characteristics other than reproducibility 
 
Special Cause Variation: Variation that is unexpected and unpredictable over time. It is a type 
of variation that is responsible for causing “Out of Control Signals.” 
 
Standard Deviation:  The square root of the variance. 
 
Standard Deviation (s) Chart: A Shewhart Chart that plots the standard deviation (described 
above) of the results of units considered as one sample versus sample number. 
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Statistical Process Control (SPC): A system and philosophy about maintaining control in a 
manufacturing environment that requires one to measure characteristics of process output when 
the process is presumably in control, using statistical methods, developing criteria based on these 
results using probability theory, and plotting results using, for example, a Shewhart Chart or 
CUSUSM chart, and then reacting to situations when the criteria are not being met, which could 
indicate the process is out of control. 
 
Statistical Process Control Chart: See Shewhart Chart. 
 
Standard Uncertainty: Uncertainty of the result of a measurement expressed as a standard 
deviation [GUM]. 
 
System Suitability: The fitness of instruments for the purpose at hand based on manufacturer 
specifications, instrumental Standard Operating Procedures, or specific requirements of the 
method. 
 
Test: A technical operation that consists of the determination of one or more characteristics or 
the performance of a given product, material, equipment, organism, physical phenomenon, 
process or service according to a specified procedure. 

NOTE: The result of a test is normally recorded in a document sometimes called a test 
report or a test certificate. 

 
Testing Laboratory: A laboratory that performs tests. 
 
Test Method: A specified technical procedure for performing a test. 
 
Test Portion: The actual material weighed or measured for the analysis. 
 
Test Sample: Material prepared from the laboratory sample and from which test portions will be 
taken. 
 
Traceability: The property of the result of a measurement or the value of a standard whereby it 
can be related to stated references, usually national or international standards, through an 
unbroken chain of comparisons all having stated uncertainties. 
 
Trueness: See bias. 
 
Type I Error: The error of classifying test results as not belonging to an assumed distribution 
(often called the “null’ hypothesis) when it actually does belong. (See alpha α – probability). 
 
Type II Error:  The error of classifying test results as belonging to an assumed distribution 
when it actually does not belong. (See beta β – probability). 
 
Uncertainty: See Measurement Uncertainty. 
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Uncontrolled Variation: Variation presumed to exists when a process experiences an “Out of 
Control Signal.” 
 
Upper Control Limit (UCL): The value that is three standard deviations above a process 
average or target, or at some specified (high) percentile of a presumed distribution. On a 
Shewhart Chart, the UCL is depicted as a line, for which an out of control signal occurs when a 
plotted values is above the line. 
 
Validation: Establishment, by systematic laboratory studies, of the performance characteristics 
of an analytical method when applied to specific matrices and/or analytes. Validation may be 
performed in a single laboratory (SLV), Multi-laboratory (MLV) or by collaborative study 
(HCV). 
 
Variables Test – A test that measures a quantitative value for which possible answers can be 
approximated by an interval of real numbers (possibly of infinite length), e.g., CFU/g of a 
microorganism in a food. 
 
Variance: The expected value of the squared difference of individual values and the population 
mean; E(x-:)2, where x is a value of the random variable from some distribution over which 
expected values are taken and : is the expected value of x. 
 
Verification: Confirmation, through the provision of objective evidence, that the performance 
characteristics of the method meet the specifications related to the intended use of the analytical 
results. 
 
Vulnerability: A flaw or weakness in a business process (system procedures, design, 
implementation, or internal controls) that could be exercised and result in a disruption to the 
process. 
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List of symbols used 
 
FP False Positive Test that corresponds to a “positive” result on a sample that is truly negative. 
 
FN False Negative Test that corresponds to a “negative” result on a sample that is truly positive. 
 
NPV Negative Predictive Value defined as the ratio or percentage of TN/(TN+FN) 
 
PPV Positive Predictive Value defined as the ratio or percentage of TP/(TP+FP) 
 
Prev Prevalence defined as the ratio or percentage of (TP+FN)/N where N equals 
TP+FP+TN+FN 
 
RSD relative standard deviation equal to the ratio of the sample standard deviation divided by 
the sample mean which is usually converted to percent 
 
RSDr relative standard deviation for a test within a laboratory (intra-laboratory) 
 
RSDR  relative standard deviation for a test between laboratories (inter-laboratory) 
 
SDr  repeatability standard deviation for a test. 
 
SDR reproducibility standard deviation for a test between. 
 
Sn Sensitivity is the probability of correctly detecting the presence of some analyte.  This can be 
expressed as a function of the actual analyte level in the sample; e.g., the test has a sensitivity of 
95% at the 0.1 ppb level. 
 
Sp Specificity is the probability of correctly not-detecting the presence of some analyte. 
 
Sis standard deviation of initial suspension for an intra-laboratory test equal to the sum of squared 
differences of identical samples and test protocols differing only in initial suspension conditions 
 
SR  standard deviation of reproducibility 
 
Sr  standard deviation of replication and random error for an intra-laboratory test otherwise equal 
to the sum of squared differences of identical samples and test protocols 
 
Scond  standard deviation of laboratory conditions for an intra-laboratory test equal to the sum of 
squared differences of identical samples and test protocols but including at least technician and 
time variability 
 
TN Total Negative Tests (excluding FN tests) 
 
TP Total Positive Tests (excluding FP tests) 
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X Arithmetic average 
 
Xi Individual measure 
 
z-score is the standard normal deviate for an observation from a normal sampling distribution 
which is the difference between the observed value and the expected value divided by the 
standard deviation. 
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